Skip to main content

Triple-Colocalization Approach to Assess Traffic Patterns and Their Modulation

  • Protocol
  • First Online:
Computer Optimized Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2040))

Abstract

Confocal microscopy permits the analysis of the subcellular distribution of proteins. Colocalization between target proteins and specific markers of differential cell compartments provides an efficient approach to studying protein traffic. In this chapter, we describe an automated method to denoise confocal microscopy images and assess the colocalization of their stainings using ImageJ software. As a step further from conventional single colocalization measurements, in the proposed method, we analyze stacks of three different stainings using two-by-two comparisons. To demonstrate the reliability and usefulness of our proposal, the method was used to compare the traffic of the voltage-gated Kv1.3 potassium channel, which is a well-defined plasma membrane protein, in the presence and absence of KCNE4, a regulatory subunit that strongly retains the channel intracellularly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th edn. Garland Science, Taylor & Francis Group, LLC, New York

    Google Scholar 

  2. Armstrong CM, Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20:371–380

    Article  CAS  PubMed  Google Scholar 

  3. Pérez-Verdaguer M, Capera J, Serrano-Novillo C, Estadella I, Sastre D, Felipe A (2016) The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opin Ther Targets 20:577–591. https://doi.org/10.1517/14728222.2016.1112792

    Article  CAS  PubMed  Google Scholar 

  4. Serrano-Albarrás A, Estadella I, Cirera-Rocosa S, Navarro-Pérez M, Felipe A (2018) Kv1.3: a multifunctional channel with many pathological implications. Expert Opin Ther Targets 22:101–105. https://doi.org/10.1080/14728222.2017.1420170

    Article  CAS  PubMed  Google Scholar 

  5. Martínez-Mármol R, Styrczewska K, Pérez-Verdaguer M, Vallejo-Gracia A, Comes N, Sorkin A, Felipe A (2017) Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation. Sci Rep 7:42395. https://doi.org/10.1038/srep42395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sole L, Roura-Ferrer M, Perez-Verdaguer M, Oliveras A, Calvo M, Fernandez-Fernandez JM, Felipe A (2009) KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating. J Cell Sci 122:3738–3748. https://doi.org/10.1242/jcs.056689

    Article  CAS  PubMed  Google Scholar 

  7. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  8. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  9. Manders EMM, Stap J, Brakenhoff GJ, Van Driel R, Aten A (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103(Pt 3):857–862

    CAS  PubMed  Google Scholar 

  10. Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc London 58:240–242. https://doi.org/10.1098/rspl.1895.0041

    Article  Google Scholar 

  11. (2018) Manel Bosch ijm-Macros. https://github.com/manelbosch76/ijm-Macros. Accessed 5 Jun 2018

  12. Rueden C (2013) Plugins—ImageJ. https://imagej.net/index.php?title=Plugins&oldid=24930. Accessed 2 Apr 2018

  13. Cordelières FP, Bolte S (2008) JACoP v2.0: improving the user experience with co-localization studies. ImageJ User Dev Conf 174–181

    Google Scholar 

  14. Cordelières FP (2008) JACoP [ImageJ Documentation Wiki]. http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:jacop_2.0:just_another_colocalization_plugin:start. Accessed 2 Apr 2018

  15. Collins TJ (2007) ImageJ for microscopy. BioTechniques 43:25–30. https://doi.org/10.2144/000112505

    Article  PubMed  Google Scholar 

  16. Collins TJ (2007) MBF plugin collection. http://imagej.net/plugins/mbf/index.html. Accessed 2 Apr 2018

  17. Kota Miura ijm-Macros. https://github.com/miura/IJ_BCautoMacro. Accessed 2 Apr 2018

  18. Schindelin J, Cardona A, Eglinger J, Rueden C, Brocher J, Hiner M, Arena ET, Arganda-Carreras I (2010) Introduction to macro programming—ImageJ. https://imagej.net/Introduction_into_Macro_Programming#Installing_macros. Accessed 2 Apr 2018

  19. ImageJ Wiki Subtract background [ImageJ Documentation Wiki]. http://imagejdocu.tudor.lu/doku.php?id=gui:process:subtract_background. Accessed 14 Jan 2018

  20. Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8:630–632. https://doi.org/10.1109/TSMC.1978.4310039

    Article  Google Scholar 

  21. Kota Miura ijm-Macros (2014). https://github.com/miura/IJ_BCautoMacro. Accessed 5 Jun 2018

  22. ImageJ Wiki (2010) Binary [ImageJ Documentation Wiki]. http://imagejdocu.tudor.lu/doku.php?id=gui:process:binary. Accessed 1 May 2018

  23. ImageJ Wiki (2008) Image calculator [ImageJ Documentation Wiki]. http://imagejdocu.tudor.lu/doku.php?id=gui:process:image_calculator. Accessed 1 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Felipe .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sastre, D., Estadella, I., Bosch, M., Felipe, A. (2019). Triple-Colocalization Approach to Assess Traffic Patterns and Their Modulation. In: Rebollo, E., Bosch, M. (eds) Computer Optimized Microscopy. Methods in Molecular Biology, vol 2040. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9686-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9686-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9685-8

  • Online ISBN: 978-1-4939-9686-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics