Skip to main content

Dual RNA-Seq of Chlamydia and Host Cells

  • Protocol
  • First Online:
Chlamydia trachomatis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

During the infection of a host cell by a bacterial pathogen, a cascading series of gene expression changes occurs as each organism manipulates or responds to the other via defense or survival strategies. Unraveling this complex interplay is key for our understanding of bacterial virulence and host response pathways for the development of novel therapeutics. Dual RNA sequencing (dual RNA-Seq) has recently been developed to simultaneously capture host and bacterial transcriptomes from an infected cell. Leveraging the sensitivity and resolution allowed by RNA-seq, dual RNA-Seq can be applied to any bacteria–eukaryotic host interaction. We pioneered dual RNA-Seq to simultaneously capture Chlamydia and host expression profiles during an in vitro infection as proof of principle. Here we provide a detailed laboratory protocol and bioinformatics analysis guidelines for dual RNA-seq experiments focusing on Chlamydia as the organism of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Humphrys MS, Creasy T, Sun Y, Shetty AC, Chibucos MC, Drabek EF, Fraser CM, Farooq U, Sengamalay N, Ott S, Shou H, Bavoil PM, Mahurkar A, Myers GSA (2013) Simultaneous transcriptional profiling of bacteria and their host cells. PLoS One 8(12):e80597. https://doi.org/10.1371/journal.pone.0080597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10(9):618–630. https://doi.org/10.1038/nrmicro2852

    Article  CAS  PubMed  Google Scholar 

  3. Wu D-D, Ye L-Q, Li Y, Sun Y-B, Shao Y, Chen C, Zhu Z, Zhong L, Wang L, Irwin DM, Zhang YE, Zhang Y-P (2015) Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing. J Mol Cell Biol 7(4):314–325. https://doi.org/10.1093/jmcb/mjv043

    Article  CAS  PubMed  Google Scholar 

  4. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349. https://doi.org/10.1126/science.1158441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marsh JW, Hayward RJ, Shetty AC, Mahurkar A, Humphrys MS, Myers GSA (2017) Bioinformatic analysis of bacteria and host cell dual RNA-sequencing experiments. Brief Bioinform 19(6):1115–1129. https://doi.org/10.1093/bib/bbx043

    Article  PubMed Central  Google Scholar 

  6. Angelini C, Costa V (2014) Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol 2:51. https://doi.org/10.3389/fcell.2014.00051

    Article  PubMed  PubMed Central  Google Scholar 

  7. Klein H-U, Schäfer M (2016) Integrative analysis of histone ChIP-seq and RNA-seq data. Curr Protoc Hum Genet 90:20.23.21–20.23.16. https://doi.org/10.1002/cphg.17

    Article  Google Scholar 

  8. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  9. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14(4):417–419. https://doi.org/10.1038/nmeth.4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4:1521. https://doi.org/10.12688/f1000research.7563.2

    Article  PubMed  Google Scholar 

  11. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD (2013) Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat Protoc 8(9):1765–1786. https://doi.org/10.1038/nprot.2013.099

    Article  CAS  PubMed  Google Scholar 

  14. Schulze S, Henkel SG, Driesch D, Guthke R, Linde J (2015) Computational prediction of molecular pathogen-host interactions based on dual transcriptome data. Front Microbiol 6:65. https://doi.org/10.3389/fmicb.2015.00065

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cho H, Davis J, Li X, Smith KS, Battle A, Montgomery SB (2014) High-resolution transcriptome analysis with long-read RNA sequencing. PLoS One 9(9):e108095. https://doi.org/10.1371/journal.pone.0108095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry S. A. Myers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marsh, J.W., Hayward, R.J., Shetty, A., Mahurkar, A., Humphrys, M.S., Myers, G.S.A. (2019). Dual RNA-Seq of Chlamydia and Host Cells. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics