Skip to main content

ADAMTS Proteins: Concepts, Challenges, and Prospects

  • Protocol
  • First Online:
ADAMTS Proteases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2043))

Abstract

The ADAMTS superfamily comprises secreted metalloproteases (ADAMTS proteases) as well as structurally related secreted glycoproteins that lack catalytic activity (ADAMTS-like proteins). Members of both families participate in diverse morphogenetic processes during embryonic development, and connective tissue maintenance and hemostasis in the adult. Several ADAMTS proteins are heavily implicated in genetic and acquired human and animal disorders. Despite these indicators of a profound biological and medical importance, detailed knowledge about their molecular structures, substrates, biological pathways, and biochemical mechanisms is significantly limited by unique intrinsic characteristics, which have led to several technical challenges. As a group, they are larger, more heavily modified, and harder to purify than other secreted proteases. In addition, idiosyncratic aspects of individual members are deserving of further investigation but can complicate their analysis. Here, some of the key concepts, challenges, and prospects in ADAMTS research are discussed in the context of the knowledge accumulated over the past two decades. Individual chapters in this volume of Methods in Molecular Biology provide practical solutions for surmounting these challenges. Since the biology of a protease is actually the biology of its substrates, there is considerable emphasis on purification of recombinant ADAMTS proteins, identification of their substrates and assays for their proteolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, Matsushima K (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem 272(1):556–562

    Article  CAS  PubMed  Google Scholar 

  2. Zheng X, Majerus EM, Sadler JE (2002) ADAMTS13 and TTP. Curr Opin Hematol 9(5):389–394

    Article  PubMed  Google Scholar 

  3. Bekhouche M, Colige A (2015) The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol 44–46:46–53. https://doi.org/10.1016/j.matbio.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  4. Fosang AJ, Little CB (2008) Drug insight: aggrecanases as therapeutic targets for osteoarthritis. Nat Clin Pract Rheumatol 4(8):420–427. https://doi.org/10.1038/ncprheum0841

    Article  CAS  PubMed  Google Scholar 

  5. Lapiere CM, Lenaers A, Kohn LD (1971) Procollagen peptidase: an enzyme excising the coordination peptides of procollagen. Proc Natl Acad Sci U S A 68(12):3054–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lapiere CM, Nusgens BV (1993) Ehlers-Danlos type VII-C, or human dermatosparaxis. The offspring of a union between basic and clinical research [editorial; comment]. Arch Dermatol 129(10):1316–1319

    Article  CAS  PubMed  Google Scholar 

  7. Moake JL, Rudy CK, Troll JH, Weinstein MJ, Colannino NM, Azocar J, Seder RH, Hong SL, Deykin D (1982) Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 307(23):1432–1435. https://doi.org/10.1056/NEJM198212023072306

    Article  CAS  PubMed  Google Scholar 

  8. Sandy JD, Flannery CR, Neame PJ, Lohmander LS (1992) The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 89(5):1512–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, Ellis DM, Tortorella MD, Pratta MA, Hollis JM, Wynn R, Duke JL, George HJ, Hillman MC Jr, Murphy K, Wiswall BH, Copeland RA, Decicco CP, Bruckner R, Nagase H, Itoh Y, Newton RC, Magolda RL, Trzaskos JM, Burn TC et al (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 274(33):23443–23450

    Article  CAS  PubMed  Google Scholar 

  10. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434(7033):644–648

    Article  CAS  PubMed  Google Scholar 

  11. Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276(16):12501–12504

    Article  CAS  PubMed  Google Scholar 

  12. Larkin J, Lohr TA, Elefante L, Shearin J, Matico R, Su JL, Xue Y, Liu F, Genell C, Miller RE, Tran PB, Malfait AM, Maier CC, Matheny CJ (2015) Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification. Osteoarthr Cartil 23(8):1254–1266. https://doi.org/10.1016/j.joca.2015.02.778

    Article  CAS  Google Scholar 

  13. Mosyak L, Georgiadis K, Shane T, Svenson K, Hebert T, McDonagh T, Mackie S, Olland S, Lin L, Zhong X, Kriz R, Reifenberg EL, Collins-Racie LA, Corcoran C, Freeman B, Zollner R, Marvell T, Vera M, Sum PE, Lavallie ER, Stahl M, Somers W (2008) Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5. Protein Sci 17(1):16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434(7033):648–652

    Article  CAS  PubMed  Google Scholar 

  15. Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC Jr, Hollis GF, Arner EC et al (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins [see comments]. Science 284(5420):1664–1666

    Article  CAS  PubMed  Google Scholar 

  16. Tortorella MD, Pratta M, Liu RQ, Austin J, Ross OH, Abbaszade I, Burn T, Arner E (2000) Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS- 4). J Biol Chem 275(24):18566–18573

    Article  CAS  PubMed  Google Scholar 

  17. Santamaria S, Yamamoto K, Botkjaer K, Tape C, Dyson MR, McCafferty J, Murphy G, Nagase H (2015) Anti-body-based exosite inhibitors of ADAMTS-5 (Aggrecanase-2). Biochem J. https://doi.org/10.1042/BJ20150758

    Article  CAS  PubMed  Google Scholar 

  18. Scully M, Knobl P, Kentouche K, Rice L, Windyga J, Schneppenheim R, Kremer Hovinga JA, Kajiwara M, Fujimura Y, Maggiore C, Doralt J, Hibbard C, Martell L, Ewenstein B (2017) Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood 130(19):2055–2063. https://doi.org/10.1182/blood-2017-06-788026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Apte SS (2016) Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem J 473(1):e1–e4. https://doi.org/10.1042/BJ20151072

    Article  CAS  PubMed  Google Scholar 

  20. Prins BP, Mead TJ, Brody JA, Sveinbjornsson G, Ntalla I, Bihlmeyer NA, van den Berg M, Bork-Jensen J, Cappellani S, Van Duijvenboden S, Klena NT, Gabriel GC, Liu X, Gulec C, Grarup N, Haessler J, Hall LM, Iorio A, Isaacs A, Li-Gao R, Lin H, Liu CT, Lyytikainen LP, Marten J, Mei H, Muller-Nurasyid M, Orini M, Padmanabhan S, Radmanesh F, Ramirez J, Robino A, Schwartz M, van Setten J, Smith AV, Verweij N, Warren HR, Weiss S, Alonso A, Arnar DO, Bots ML, de Boer RA, Dominiczak AF, Eijgelsheim M, Ellinor PT, Guo X, Felix SB, Harris TB, Hayward C, Heckbert SR, Huang PL, Jukema JW, Kahonen M, Kors JA, Lambiase PD, Launer LJ, Li M, Linneberg A, Nelson CP, Pedersen O, Perez M, Peters A, Polasek O, Psaty BM, Raitakari OT, Rice KM, Rotter JI, Sinner MF, Soliman EZ, Spector TD, Strauch K, Thorsteinsdottir U, Tinker A, Trompet S, Uitterlinden A, Vaartjes I, van der Meer P, Volker U, Volzke H, Waldenberger M, Wilson JG, Xie Z, Asselbergs FW, Dorr M, van Duijn CM, Gasparini P, Gudbjartsson DF, Gudnason V, Hansen T, Kaab S, Kanters JK, Kooperberg C, Lehtimaki T, Lin HJ, Lubitz SA, Mook-Kanamori DO, Conti FJ, Newton-Cheh CH, Rosand J, Rudan I, Samani NJ, Sinagra G, Smith BH, Holm H, Stricker BH, Ulivi S, Sotoodehnia N, Apte SS, van der Harst P, Stefansson K, Munroe PB, Arking DE, Lo CW, Jamshidi Y (2018) Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6. Genome Biol 19(1):87. https://doi.org/10.1186/s13059-018-1457-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tharmarajah G, Eckhard U, Jain F, Marino G, Prudova A, Urtatiz O, Fuchs H, de Angelis MH, Overall CM, Van Raamsdonk CD (2018) Melanocyte development in the mouse tail epidermis requires the Adamts9 metalloproteinase. Pigment Cell Melanoma Res 31(6):693–707. https://doi.org/10.1111/pcmr.12711

    Article  CAS  PubMed  Google Scholar 

  22. Ricketts LM, Dlugosz M, Luther KB, Haltiwanger RS, Majerus EM (2007) O-fucosylation is required for ADAMTS13 secretion. J Biol Chem 282(23):17014–17023

    Article  CAS  PubMed  Google Scholar 

  23. Wang LW, Dlugosz M, Somerville RP, Raed M, Haltiwanger RS, Apte SS (2007) O-fucosylation of thrombospondin type 1 repeats in ADAMTS-like-1/punctin-1 regulates secretion: implications for the ADAMTS superfamily. J Biol Chem 282(23):17024–17031

    Article  CAS  PubMed  Google Scholar 

  24. Wang LW, Leonhard-Melief C, Haltiwanger RS, Apte SS (2009) Post-translational modification of thrombospondin type-1 repeats in ADAMTS-like 1/punctin-1 by C-mannosylation of tryptophan. J Biol Chem 284(44):30004–30015. https://doi.org/10.1074/jbc.M109.038059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kramerova IA, Kawaguchi N, Fessler LI, Nelson RE, Chen Y, Kramerov AA, Kusche-Gullberg M, Kramer JM, Ackley BD, Sieron AL, Prockop DJ, Fessler JH (2000) Papilin in development; a pericellular protein with a homology to the ADAMTS metalloproteinases. Development 127(24):5475–5485

    CAS  PubMed  Google Scholar 

  26. Hubmacher D, Apte SS (2011) Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function. Cell Mol Life Sci 68(19):3137–3148. https://doi.org/10.1007/s00018-011-0780-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hubmacher D, Apte SS (2015) ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol 47:34–43. https://doi.org/10.1016/j.matbio.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell AG, Fessler LI, Salo T, Fessler JH (1987) Papilin: a drosophila proteoglycan-like sulfated glycoprotein from basement membranes. J Biol Chem 262(36):17605–17612

    CAS  PubMed  Google Scholar 

  29. Clark ME, Kelner GS, Turbeville LA, Boyer A, Arden KC, Maki RA (2000) ADAMTS9, a novel member of the ADAM-TS/metallospondin gene family. Genomics 67(3):343–350

    Article  CAS  PubMed  Google Scholar 

  30. Llamazares M, Cal S, Quesada V, Lopez-Otin C (2003) Identification and characterization of ADAMTS-20 defines a novel subfamily of metalloproteinases-disintegrins with multiple thrombospondin-1 repeats and a unique GON domain. J Biol Chem 278(15):13382–13389

    Article  CAS  PubMed  Google Scholar 

  31. Somerville RP, Longpre JM, Jungers KA, Engle JM, Ross M, Evanko S, Wight TN, Leduc R, Apte SS (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278(11):9503–9513

    Article  CAS  PubMed  Google Scholar 

  32. Huxley-Jones J, Apte SS, Robertson DL, Boot-Handford RP (2005) The characterisation of six ADAMTS proteases in the basal chordate Ciona intestinalis provides new insights into the vertebrate ADAMTS family. Int J Biochem Cell Biol 37(9):1838–1845

    Article  CAS  PubMed  Google Scholar 

  33. Brouillard P, Dupont L, Helaers R, Coulie R, Tiller GE, Peeden J, Colige A, Vikkula M (2017) Loss of ADAMTS3 activity causes Hennekam lymphangiectasia-lymphedema syndrome 3. Hum Mol Genet 26(21):4095–4104. https://doi.org/10.1093/hmg/ddx297

    Article  CAS  PubMed  Google Scholar 

  34. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppanen VM, Holopainen T, Kivela R, Ortega S, Karpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129(19):1962–1971. https://doi.org/10.1161/CIRCULATIONAHA.113.002779

    Article  CAS  PubMed  Google Scholar 

  35. Ogino H, Hisanaga A, Kohno T, Kondo Y, Okumura K, Kamei T, Sato T, Asahara H, Tsuiji H, Fukata M, Hattori M (2017) Secreted metalloproteinase ADAMTS-3 inactivates Reelin. J Neurosci 37(12):3181–3191. https://doi.org/10.1523/JNEUROSCI.3632-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bekhouche M, Leduc C, Dupont L, Janssen L, Delolme F, Vadon-Le Goff S, Smargiasso N, Baiwir D, Mazzucchelli G, Zanella-Cleon I, Dubail J, De Pauw E, Nusgens B, Hulmes DJ, Moali C, Colige A (2016) Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-beta signaling as primary targets. FASEB J 30(5):1741–1756. https://doi.org/10.1096/fj.15-279869

    Article  CAS  PubMed  Google Scholar 

  37. Mead TJ, McCulloch DR, Ho JC, Du Y, Adams SM, Birk DE, Apte SS (2018) The metalloproteinase-proteoglycans ADAMTS7 and ADAMTS12 provide an innate, tendon-specific protective mechanism against heterotopic ossification. JCI Insight 3(7):92941. https://doi.org/10.1172/jci.insight.92941

    Article  PubMed  Google Scholar 

  38. Fu Y, Kong W (2017) Cartilage oligomeric matrix protein: matricellular and matricrine signaling in cardiovascular homeostasis and disease. Curr Vasc Pharmacol 15(3):186–196. https://doi.org/10.2174/1570161115666170201121232

    Article  CAS  PubMed  Google Scholar 

  39. Liu CJ, Kong W, Xu K, Luan Y, Ilalov K, Sehgal B, Yu S, Howell RD, Di Cesare PE (2006) ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem 281(23):15800–15808

    Article  CAS  PubMed  Google Scholar 

  40. Hubmacher D, Schneider M, Berardinelli SJ, Takeuchi H, Willard B, Reinhardt DP, Haltiwanger RS, Apte SS (2017) Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Sci Rep 7:41871. https://doi.org/10.1038/srep41871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nandadasa S, Kraft CM, Wang LW, O’Donnell A, Patel R, Gee HG, Grobe K, Cox TC, Hildebrandt F, Apte SS (2019) Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nat Commun 10(1)

    Google Scholar 

  42. McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, Sasaki T, Cooley MA, Argraves WS, Apte SS (2009) ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 17(5):687–698. https://doi.org/10.1016/j.devcel.2009.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dubail J, Vasudevan D, Wang LW, Earp SE, Junkins MW, Haltiwanger RS, Apte SS (2016) Impaired ADAMTS9 secretion: a potential mechanism for eye defects in Peters plus syndrome. Sci Rep 6:33974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dubail J, Apte SS (2015) Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol 44–46:24–37. https://doi.org/10.1016/j.matbio.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  45. Mead TJ, Apte SS (2018) ADAMTS proteins in human disorders. Matrix Biol 71–72:225–239. https://doi.org/10.1016/j.matbio.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pu X, Xiao Q, Kiechl S, Chan K, Ng FL, Gor S, Poston RN, Fang C, Patel A, Senver EC, Shaw-Hawkins S, Willeit J, Liu C, Zhu J, Tucker AT, Xu Q, Caulfield MJ, Ye S (2013) ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet 92(3):366–374. https://doi.org/10.1016/j.ajhg.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, Horne BD, Stewart AF, Assimes TL, Wild PS, Allayee H, Nitschke PL, Patel RS, Martinelli N, Girelli D, Quyyumi AA, Anderson JL, Erdmann J, Hall AS, Schunkert H, Quertermous T, Blankenberg S, Hazen SL, Roberts R, Kathiresan S, Samani NJ, Epstein SE, Rader DJ (2011) Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 377(9763):383–392. https://doi.org/10.1016/S0140-6736(10)61996-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirohata S, Wang LW, Miyagi M, Yan L, Seldin MF, Keene DR, Crabb JW, Apte SS (2002) Punctin, a novel ADAMTS-like molecule (ADAMTSL-1) in extracellular matrix. J Biol Chem 22:22

    Google Scholar 

  49. Le Goff C, Morice-Picard F, Dagoneau N, Wang LW, Perrot C, Crow YJ, Bauer F, Flori E, Prost-Squarcioni C, Krakow D, Ge G, Greenspan DS, Bonnet D, Le Merrer M, Munnich A, Apte SS, Cormier-Daire V (2008) ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nat Genet 40(9):1119–1123. https://doi.org/10.1038/ng.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR, Fessler LI, Fessler JH, Sekiguchi K, Hayflick SJ, Sakai LY (2012) Microenvironmental regulation by fibrillin-1. PLoS Genet 8(1):e1002425. https://doi.org/10.1371/journal.pgen.1002425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Little CB, Meeker CT, Golub SB, Lawlor KE, Farmer PJ, Smith SM, Fosang AJ (2007) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 117(6):1627–1636. https://doi.org/10.1172/JCI30765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dubail J, Aramaki-Hattori N, Bader HL, Nelson CM, Katebi N, Matuska B, Olsen BR, Apte SS (2014) A new Adamts9 conditional mouse allele identifies its non-redundant role in interdigital web regression. Genesis 52(7):702–712. https://doi.org/10.1002/dvg.22784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is grateful to Caroline Kraft for producing the illustrations. This work was supported by NIH-NEI award EY024943 and by the Allen Distinguished Investigator Program, through support made by The Paul G. Allen Frontiers Group and the American Heart Association to S.S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneel S. Apte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Apte, S.S. (2020). ADAMTS Proteins: Concepts, Challenges, and Prospects. In: Apte, S. (eds) ADAMTS Proteases. Methods in Molecular Biology, vol 2043. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9698-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9698-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9697-1

  • Online ISBN: 978-1-4939-9698-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics