Skip to main content

How Docking Programs Work

  • Protocol
  • First Online:
Docking Screens for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Protein–ligand docking simulations are of central interest for computer-aided drug design. Docking is also of pivotal importance to understand the structural basis for protein–ligand binding affinity. In the last decades, we have seen an explosion in the number of three-dimensional structures of protein–ligand complexes available at the Protein Data Bank. These structures gave further support for the development and validation of in silico approaches to address the binding of small molecules to proteins. As a result, we have now dozens of open source programs and web servers to carry out molecular docking simulations. The development of the docking programs and the success of such simulations called the attention of a broad spectrum of researchers not necessarily familiar with computer simulations. In this scenario, it is essential for those involved in experimental studies of protein–ligand interactions and biophysical techniques to have a glimpse of the basics of the protein–ligand docking simulations. Applications of protein–ligand docking simulations to drug development and discovery were able to identify hits, inhibitors, and even drugs. In the present chapter, we cover the fundamental ideas behind protein–ligand docking programs for non-specialists, which may benefit from such knowledge when studying molecular recognition mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JA et al (2012) Recent progress of molecular docking simulations applied to development of drugs. Curr Bioinforma 7:352–365

    Article  CAS  Google Scholar 

  2. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6:402–406

    Article  CAS  PubMed  Google Scholar 

  3. Breda A, Basso LA, Santos DS, de Azevedo Jr WF (2008) Virtual screening of drugs: score functions, docking, and drug design. Curr Comput Aided Drug Des 4:265–272

    Article  CAS  Google Scholar 

  4. de Azevedo WF Jr (2008) Protein-drug interactions. Curr Drug Targets 9:1030

    Article  PubMed  Google Scholar 

  5. de Azevedo WF Jr, Dias R (2008) Computational methods for calculation of ligand-binding affinity. Curr Drug Targets 9:1031–1039

    Article  PubMed  Google Scholar 

  6. Dias R, de Azevedo WF Jr (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  PubMed  Google Scholar 

  7. de Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets 11:327–334

    Article  PubMed  Google Scholar 

  8. de Azevedo WF Jr (2010) Structure-based virtual screening. Curr Drug Targets 11:261–263

    Article  PubMed  Google Scholar 

  9. de Avila MB, de Azevedo WF (2014) Data mining of docking results. Application to 3-dehydroquinate dehydratase. Curr Bioinf 9:361–379

    Article  CAS  Google Scholar 

  10. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  11. Fischer E (1890) Ueber die optischen Isomeren des Traubezuckers, der Gluconsäure und der Zuckersäure. Ber Dtsch Chem Ges 23:2611–2624

    Article  Google Scholar 

  12. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  13. Koshland DE Jr (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed Engl 33:2375–2378

    Article  Google Scholar 

  14. Jorgensen WL (1991) Rusting of the lock and key model for protein-ligand binding. Science 254:954–955

    Article  CAS  PubMed  Google Scholar 

  15. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  16. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  PubMed  Google Scholar 

  17. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  18. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55:288–304

    Article  CAS  PubMed  Google Scholar 

  22. Yang JM, Shen TW (2005) A pharmacophore-based evolutionary approach for screening selective estrogen receptor modulators. Proteins 59:205–220

    Article  PubMed  CAS  Google Scholar 

  23. Bitencourt-Ferreira G, de Azevedo Jr WF (2018) Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys Chem 240:63–69

    Article  CAS  PubMed  Google Scholar 

  24. de Ávila MB, de Azevedo WF Jr (2018) Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem Biol Drug Des 92:1468–1474

    Article  PubMed  CAS  Google Scholar 

  25. Russo S, de Azevedo WF (2019) Advances in the understanding of the cannabinoid receptor 1—focusing on the inverse agonists interactions. Curr Med Chem. https://doi.org/10.2174/0929867325666180417165247

    Article  PubMed  Google Scholar 

  26. Amaral MEA, Nery LR, Leite CE, de Azevedo Junior WF, Campos MM (2018) Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest New Drugs 36:782–796

    Article  CAS  PubMed  Google Scholar 

  27. Levin NMB, Pintro VO, Bitencourt-Ferreira G, Mattos BB, Silvério AC, de Azevedo Jr WF (2018) Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys Chem 235:1–8

    Article  CAS  PubMed  Google Scholar 

  28. Freitas PG, Elias TC, Pinto IA, Costa LT, de Carvalho PVSD, Omote DQ et al (2018) Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein. Lett Drug Des Discovery 15:488–499

    Article  CAS  Google Scholar 

  29. Pintro VO, Azevedo WF (2017) Optimized virtual screening workflow. Towards target-based polynomial scoring functions for HIV-1 protease. Comb Chem High Throughput Screen 20:820–827

    Article  CAS  PubMed  Google Scholar 

  30. de Ávila MB, Xavier MM, Pintro VO, de Azevedo WF (2017) Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem Biophys Res Commun 494:305–310

    Article  CAS  PubMed  Google Scholar 

  31. Heck GS, Pintro VO, Pereira RR, de Ávila MB, Levin NMB, de Azevedo WF (2017) Supervised machine learning methods applied to predict ligand-binding affinity. Curr Med Chem 24:2459–2470

    Article  CAS  PubMed  Google Scholar 

  32. Levin NM, Pintro VO, de Ávila MB, de Mattos BB, De Azevedo WF Jr (2017) Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr Drug Targets 18:1104–1111

    Article  CAS  PubMed  Google Scholar 

  33. Teles CB, Moreira-Dill LS, Silva Ade A, Facundo VA, de Azevedo WF Jr, da Silva LH et al (2015) A Lupane-triterpene isolated from Combretum leprosum Mart. Fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med 15:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Coracini JD, de Azevedo WF Jr (2014) Shikimate kinase, a protein target for drug design. Curr Med Chem 21:592–604

    Article  CAS  PubMed  Google Scholar 

  35. Moraes FP, de Azevedo WF Jr (2012) Targeting imidazoline site on monoamine oxidase B through molecular docking simulations. J Mol Model 18:3877–3886

    Article  CAS  PubMed  Google Scholar 

  36. Soares MB, Silva CV, Bastos TM, Guimarães ET, Figueira CP, Smirlis D et al (2012) Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop 12:224–229

    Article  CAS  Google Scholar 

  37. Vianna CP, de Azevedo WF Jr (2012) Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 18:755–764

    Article  CAS  PubMed  Google Scholar 

  38. Sá MS, de Menezes MN, Krettli AU, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R et al (2011) Antimalarial activity of physalins B, D, F, and G. J Nat Prod 74:2269–2272

    Article  PubMed  CAS  Google Scholar 

  39. Canduri F, Perez PC, Caceres RA, de Azevedo WF Jr (2008) CDK9 a potential target for drug development. Med Chem 4:210–218

    Article  CAS  PubMed  Google Scholar 

  40. Xavier MM, Heck GS, de Avila MB, Levin NM, Pintro VO, Carvalho NL et al (2016) SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen 19:801–812

    Article  CAS  PubMed  Google Scholar 

  41. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  42. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  43. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  44. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  45. Heberlé G, de Azevedo WF Jr (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352

    Article  PubMed  Google Scholar 

  46. Böhm HJ (1993) A novel computational tool for automated structure-based drug design. J Mol Recognit 6:131–137

    Article  PubMed  Google Scholar 

  47. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243–256

    Article  PubMed  Google Scholar 

  48. Böhm HJ (1996) Towards the automatic design of synthetically accessible protein ligands: peptides, amides and peptidomimetics. J Comput Aided Mol Des 10:265–272

    Article  PubMed  Google Scholar 

  49. Stahl M, Böhm HJ (1998) Development of filter functions for protein-ligand docking. J Mol Graph Model 16:121–132

    Article  CAS  PubMed  Google Scholar 

  50. Klebe G, Böhm HJ (1997) Energetic and entropic factors determining binding affinity in protein-ligand complexes. J Recept Signal Transduct Res 17:459–473

    Article  CAS  PubMed  Google Scholar 

  51. Böhm HJ, Banner DW, Weber L (1999) Combinatorial docking and combinatorial chemistry: design of potent non-peptide thrombin inhibitors. J Comput Aided Mol Des 13:51–56

    Article  PubMed  Google Scholar 

  52. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  PubMed  CAS  Google Scholar 

  54. Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) The protein data Bank and structural genomics. Nucleic Acids Res 31:489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu L, Benson ML, Smith RD, Lerner MG, Carlson HA (2005) Binding MOAD (mother of all databases). Proteins 60:333–340

    Article  CAS  PubMed  Google Scholar 

  56. Liu T, Lin Y, Wen X, Jorrisen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:198–201

    Article  Google Scholar 

  57. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  PubMed  Google Scholar 

  58. Ballante F, Marshall GR (2016) An automated strategy for binding-pose selection and docking assessment in structure-based drug design. J Chem Inf Model 56:54–72

    Article  CAS  PubMed  Google Scholar 

  59. Vieth M, Hirst JD, Kolinski A, Brooks CL III (1998) Assessing energy functions for flexible docking. J Comput Chem 19:1612–1622

    Article  CAS  Google Scholar 

  60. Zar JH (1972) Significance testing of the spearman rank correlation coefficient. J Am Stat Assoc 67:578–580

    Article  Google Scholar 

  61. Irwin JJ, Shoichet BK (2005) ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  PubMed  Google Scholar 

  64. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  65. Murray AW (1994) Cyclin-dependent kinases: regulators of the cell cycle and more. Chem Biol 1:191–195

    Article  CAS  PubMed  Google Scholar 

  66. Kim SH, Schulze-Gahmen U, Brandsen J, de Azevedo Júnior WF (1996) Structural basis for chemical inhibition of CDK2. Prog Cell Cycle Res 2:137–145

    Article  CAS  PubMed  Google Scholar 

  67. De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 93:2735–2740

    Article  PubMed  PubMed Central  Google Scholar 

  68. Canduri F, de Azevedo WF Jr (2005) Structural basis for interaction of inhibitors with cyclin-dependent kinase 2. Curr Comput Aided Drug Des 1:53–64

    Article  CAS  Google Scholar 

  69. Krystof V, Cankar P, Frysová I, Slouka J, Kontopidis G, Dzubák P et al (2006) 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 49:6500–6509

    Article  CAS  PubMed  Google Scholar 

  70. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602

    PubMed  Google Scholar 

  71. Schulze-Gahmen U, De Bondt HL, Kim SH (1996) High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J Med Chem 39:4540–4546

    CAS  PubMed  Google Scholar 

  72. de Azevedo WF Jr (2016) Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): a new strategy for molecular docking studies. Curr Drug Targets 17:2

    Article  PubMed  CAS  Google Scholar 

  73. Leopoldino AM, Canduri F, Cabral H, Junqueira M, de Marqui AB, Apponi LH et al (2006) Expression, purification, and circular dichroism analysis of human CDK9. Protein Expr Purif 47:614–620

    Article  CAS  PubMed  Google Scholar 

  74. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF (2019) Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr Drug Targets 20(7):716–726. https://doi.org/10.2174/1389450120666181204165344

    Article  CAS  PubMed  Google Scholar 

  75. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 243:518–526

    Article  PubMed  Google Scholar 

  76. de Azevedo WF Jr, Dias R (2008) Experimental approaches to evaluate the thermodynamics of protein-drug interactions. Curr Drug Targets 9:1071–1076

    Article  PubMed  Google Scholar 

  77. Ma W, Yang L, He L (2018) Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J Pharm Anal 8:147–152

    Article  PubMed  PubMed Central  Google Scholar 

  78. Falconer RJ (2016) Applications of isothermal titration calorimetry—the research and technical developments from 2011 to 2015. J Mol Recognit 29:504–515

    Article  CAS  PubMed  Google Scholar 

  79. de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF Jr (2019) Structural basis for inhibition of Enoyl-[Acyl Carrier Protein] Reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem. https://doi.org/10.2174/0929867326666181203125229

  80. Pereira JH, Canduri F, de Oliveira JS, da Silveira NJ, Basso LA, Palma MS et al (2003) Structural bioinformatics study of EPSP synthase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 312:608–614

    Article  CAS  PubMed  Google Scholar 

  81. Borges JC, Pereira JH, Vasconcelos IB, dos Santos GC, Olivieri JR, Ramos CH et al (2006) Phosphate closes the solution structure of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Mycobacterium tuberculosis. Arch Biochem Biophys 452:156–164

    Article  CAS  PubMed  Google Scholar 

  82. Marques MR, Pereira JH, Oliveira JS, Basso LA, de Azevedo WF Jr, Santos DS et al (2007) The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr Drug Targets 8:445–457

    Article  CAS  PubMed  Google Scholar 

  83. Marques MR, Vaso A, Neto JR, Fossey MA, Oliveira JS, Basso LA et al (2008) Dynamics of glyphosate-induced conformational changes of Mycobacterium tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19) determined by hydrogen-deuterium exchange and electrospray mass spectrometry. Biochemistry 47:7509–7522

    Article  CAS  PubMed  Google Scholar 

  84. de Azevedo WF Jr, Canduri F, dos Santos DM, Silva RG, de Oliveira JS, de Carvalho LP et al (2003) Crystal structure of human purine nucleoside phosphorylase at 2.3A resolution. Biochem Biophys Res Commun 308:545–552

    Article  PubMed  CAS  Google Scholar 

  85. dos Santos DM, Canduri F, Pereira JH, Vinicius Bertacine Dias M, Silva RG et al (2003) Crystal structure of human purine nucleoside phosphorylase complexed with acyclovir. Biochem Biophys Res Commun 308:553–559

    Article  PubMed  CAS  Google Scholar 

  86. Filgueira de Azevedo W Jr, Canduri F, Marangoni dos Santos D, Pereira JH, Dias MV, Silva RG et al (2003) Structural basis for inhibition of human PNP by immucillin-H. Biochem Biophys Res Commun 309:917–922

    Article  CAS  PubMed  Google Scholar 

  87. Filgueira de Azevedo W Jr, dos Santos GC, dos Santos DM, Olivieri JR, Canduri F, Silva RG et al (2003) Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem Biophys Res Commun 309:923–928

    Article  CAS  PubMed  Google Scholar 

  88. de Azevedo WF Jr, Canduri F, dos Santos DM, Pereira JH, Bertacine Dias MV, Silva RG et al (2003) Crystal structure of human PNP complexed with guanine. Biochem Biophys Res Commun 312:767–772

    Article  PubMed  CAS  Google Scholar 

  89. da Silveira NJ, Uchôa HB, Canduri F, Pereira JH, Camera JC Jr, Basso LA et al (2004) Structural bioinformatics study of PNP from Schistosoma mansoni. Biochem Biophys Res Commun 322:100–104

    Article  PubMed  CAS  Google Scholar 

  90. Canduri F, dos Santos DM, Silva RG, Mendes MA, Basso LA, Palma MS et al (2004) Structures of human purine nucleoside phosphorylase complexed with inosine and ddI. Biochem Biophys Res Commun 313:907–914

    Article  CAS  PubMed  Google Scholar 

  91. Nolasco DO, Canduri F, Pereira JH, Cortinóz JR, Palma MS, Oliveira JS et al (2004) Crystallographic structure of PNP from Mycobacterium tuberculosis at 1.9A resolution. Biochem Biophys Res Commun 324:789–794

    Article  CAS  PubMed  Google Scholar 

  92. Canduri F, Fadel V, Dias MV, Basso LA, Palma MS, Santos DS et al (2005) Crystal structure of human PNP complexed with hypoxanthine and sulfate ion. Biochem Biophys Res Commun 326:335–338

    Article  CAS  PubMed  Google Scholar 

  93. Canduri F, Fadel V, Basso LA, Palma MS, Santos DS, de Azevedo WF Jr (2005) New catalytic mechanism for human purine nucleoside phosphorylase. Biochem Biophys Res Commun 327:646–649

    Article  CAS  PubMed  Google Scholar 

  94. Canduri F, Silva RG, dos Santos DM, Palma MS, Basso LA, Santos DS et al (2005) Structure of human PNP complexed with ligands. Acta Crystallogr D Biol Crystallogr 61:856–862

    Article  PubMed  CAS  Google Scholar 

  95. Silva RG, Pereira JH, Canduri F, de Azevedo WF Jr, Basso LA, Santos DS (2005) Kinetics and crystal structure of human purine nucleoside phosphorylase in complex with 7-methyl-6-thio-guanosine. Arch Biochem Biophys 442:49–58

    Article  CAS  PubMed  Google Scholar 

  96. de Azevedo WF Jr, Canduri F, Basso LA, Palma MS, Santos DS (2006) Determining the structural basis for specificity of ligands using crystallographic screening. Cell Biochem Biophys 44:405–411

    Article  PubMed  Google Scholar 

  97. Ducati RG, Basso LA, Santos DS, de Azevedo WF Jr (2010) Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Bioorg Med Chem 18:4769–4774

    Article  CAS  PubMed  Google Scholar 

  98. Pereira JH, Vasconcelos IB, Oliveira JS, Caceres RA, de Azevedo WF Jr, Basso LA et al (2007) Shikimate kinase: a potential target for development of novel lectiagents. Curr Drug Targets 8:459–468

    Article  CAS  PubMed  Google Scholar 

  99. Delatorre P, Rocha BA, Souza EP, Oliveira TM, Bezerra GA, Moreno FB et al (2007) Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules. BMC Struct Biol 7:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Canduri F, de Azevedo WF (2008) Protein crystallography in drug discovery. Curr Drug Targets 9:1048–1053

    Article  CAS  PubMed  Google Scholar 

  101. Canduri F, Perez PC, Caceres RA, de Azevedo WF Jr (2007) Protein kinases as targets for antiparasitic chemotherapy drugs. Curr Drug Targets 8:389–398

    Article  CAS  PubMed  Google Scholar 

  102. Dias MV, Borges JC, Ely F, Pereira JH, Canduri F, Ramos CH et al (2006) Structure of chorismate synthase from Mycobacterium tuberculosis. J Struct Biol 154:130–143

    Article  CAS  PubMed  Google Scholar 

  103. Dias MV, Ely F, Palma MS, de Azevedo WF Jr, Basso LA, Santos DS (2007) Chorismate synthase: an attractive target for drug development against orphan diseases. Curr Drug Targets 8:437–444

    Article  CAS  PubMed  Google Scholar 

  104. de Azevedo WF Jr (2011) Protein targets for development of drugs against Mycobacterium tuberculosis. Curr Med Chem 18:1255–1257

    Article  PubMed  Google Scholar 

  105. Dias MV, Faím LM, Vasconcelos IB, de Oliveira JS, Basso LA, Santos DS et al (2007) Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:1–6

    Article  CAS  PubMed  Google Scholar 

  106. de Azevedo WF Jr, Ward RJ, Canduri F, Soares A, Giglio JR, Arni RK (1998) Crystal structure of piratoxin-I: a calcium-independent, myotoxic phospholipase A2-homologue from Bothrops pirajai venom. Toxicon 36:1395–1406

    Article  PubMed  Google Scholar 

  107. Bezerra GA, Oliveira TM, Moreno FB, de Souza EP, da Rocha BA, Benevides RG et al (2007) Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J Struct Biol 160:168–176

    Article  CAS  PubMed  Google Scholar 

  108. Delatorre P, Rocha BA, Gadelha CA, Santi-Gadelha T, Cajazeiras JB, Souza EP et al (2006) Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. J Struct Biol 154:280–286

    CAS  PubMed  Google Scholar 

  109. Rádis-Baptista G, Moreno FB, de Lima Nogueira L, Martins AM, de Oliveira TD, Toyama MH et al (2006) Crotacetin, a novel snake venom C-type lectin homolog of convulxin, exhibits an unpredictable antimicrobial activity. Cell Biochem Biophys 44:412–423

    PubMed  Google Scholar 

  110. de Azevedo WF Jr (2011) Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr Med Chem 18:1353–1366

    Article  PubMed  Google Scholar 

  111. Sforça ML, Oyama S Jr, Canduri F, Lorenzi CC, Pertinhez TA, Konno K et al (2004) How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43:5608–5617

    Article  PubMed  CAS  Google Scholar 

  112. de Azevedo WF Jr, Canduri F, Fadel V, Teodoro LG, Hial V, Gomes RA (2001) Molecular model for the binary complex of uropepsin and pepstatin. Biochem Biophys Res Commun 287:277–281

    Article  PubMed  CAS  Google Scholar 

  113. Salmaso V, Moro S (2018) Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol 9:923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kontoyianni M, Lacy B (2018) Toward computational understanding of molecular recognition in the human metabolizing cytochrome P450s. Curr Med Chem 25:3353–3373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq (Brazil) (308883/2014-4). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brasil (CAPES)—Finance Code 001. GB-F acknowledges support from PUCRS/BPA fellowship. WFA is a senior researcher for CNPq (Brazil) (Process Numbers: 308883/2014-4 and 309029/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bitencourt-Ferreira, G., de Azevedo, W.F. (2019). How Docking Programs Work. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics