Skip to main content

Single-Molecule Arrays for Ultrasensitive Detection of Blood-Based Biomarkers for Immunotherapy

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

Single-molecule array (Simoa) technology enables ultrasensitive protein detection that is suited to the development of peripheral blood-based assays for assessing immuno-oncology responses. We adapted a panel of Simoa assays to measure systemic cytokine levels from plasma and characterized physiologic variation in healthy individuals and preanalytic variation arising from processing and handling of patient samples. Insights from these preclinical studies led us to a well-defined set of Simoa assay conditions, a specimen processing protocol, and a data processing approach that we describe here. Simoa enables accurate quantitation of soluble immune signaling molecules in an unprecedented femtomolar range, opening up the potential for liquid biopsy-type approaches in immuno-oncology. We are using the method described here to distinguish PD-1 inhibitor nonresponders as early as after one dose after therapy and envision applications in characterizing PD-1 inhibitor resistance and detection of immune-related adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nishino M, Ramaiya NH, Hatabu H, Hodi FS (2017) Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol 14:655–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6:827–837

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A et al (2017) Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in melanoma. Clin Cancer Res 23:5024

    Article  CAS  PubMed  Google Scholar 

  6. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A et al (2017) Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A 114:4993–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM et al (2018) High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 24:144–153

    Article  CAS  PubMed  Google Scholar 

  8. Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ et al (2018) Circulating tumor DNA analysis in patients with Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol Off J Am Soc Clin Oncol 36:1631–1641

    Article  CAS  Google Scholar 

  9. Aziz N (2015) Measurement of circulating cytokines and immune-activation markers by multiplex technology in the clinical setting: what are we really measuring? Forum Immunopathol Dis Ther 6:19–22

    Article  Google Scholar 

  10. Yeung D, Ciotti S, Purushothama S, Gharakhani E, Kuesters G, Schlain B et al (2016) Evaluation of highly sensitive immunoassay technologies for quantitative measurements of sub-pg/mL levels of cytokines in human serum. J Immunol Methods 437:53–63

    Article  CAS  PubMed  Google Scholar 

  11. Cohen L, Keegan A, Melanson SEF, Walt DR (2019) Impact of clinical sample handling and processing on ultra-low level measurements of plasma cytokines. Clin Biochem 65:38–44

    Article  CAS  PubMed  Google Scholar 

  12. Rissin DM, Fournier DR, Piech T, Kan CW, Campbell TG, Song L et al (2011) Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal Chem 83:2279–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG et al (2016) The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom 21:533–547

    Article  CAS  PubMed  Google Scholar 

  14. Wu D, Milutinovic MD, Walt DR (2015) Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. Analyst 140:6277–6282

    Article  CAS  PubMed  Google Scholar 

  15. Vgontzas AN, Papanicolaou DA, Bixler EO, Lotsikas A, Zachman K, Kales A et al (1999) Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 84:2603–2607

    Article  CAS  PubMed  Google Scholar 

  16. Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK (1998) Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol 508 (. Pt 3:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wedell-Neergaard A-S, Lang Lehrskov L, Christensen RH, Legaard GE, Dorph E, Larsen MK et al (2019) Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab 29(4):844–855.e3

    Article  CAS  PubMed  Google Scholar 

  18. Wu D, Dinh TL, Bausk BP, Walt DR (2017) Long-term measurements of human inflammatory cytokines reveal complex baseline variations between individuals. Am J Pathol 187:2620–2626

    Article  CAS  PubMed  Google Scholar 

  19. Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott MF et al (1999) Cytokine gene polymorphism in human disease: on-line databases. Genes Immun 1:3–19

    Article  CAS  PubMed  Google Scholar 

  20. In U.S. Department of Health and Human Services. FDA. Guidance for industry: bioanalytical method validation; 2013. p. 1–27

    Google Scholar 

  21. Cohen L, Walt DR (2018) Evaluation of antibody Biotinylation approaches for enhanced sensitivity of single molecule Array (Simoa) immunoassays. Bioconjug Chem 29:3452–3458

    Article  CAS  PubMed  Google Scholar 

  22. Wild D (2013) The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  23. FDA. Guidance for Industry: Bioanalytical method validation. US Dep Health Hum Serv; 2013. p. 1–27

    Google Scholar 

  24. Van Breukelen GJP (2006) ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies [corrected]. J Clin Epidemiol 59:920–925

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

L.C. and D.R.W. were funded by DARPA (HR0011-12-2-0001; Pass-through-entity: Univ. of North Carolina Chapel-Hill, subaward 5055065).

Conflict of Interest: The authors declare the following competing financial interest: David R. Walt is the scientific founder and a board member of Quanterix Corporation. All other authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alissa Keegan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cohen, L., Keegan, A., Walt, D.R. (2020). Single-Molecule Arrays for Ultrasensitive Detection of Blood-Based Biomarkers for Immunotherapy. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics