Skip to main content

Primary Cultures of Pure Embryonic Dorsal Root Ganglia Sensory Neurons as a New Cellular Model for Friedreich’s Ataxia

  • Protocol
  • First Online:
Trinucleotide Repeats

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2056))

Abstract

Peripheral neuropathies can have various origins, from genetic to acquired causes, and affect altogether a large group of people in the world. Current available therapies aim at helping the disease symptoms but not to correct or stop the development of the disease. Primary neuronal cultures represent an essential tool in the study of events related to peripheral neuropathies as they allow to isolate the affected cell types, often originating in complex tissues in which they account for only a few percentage of cells. They provide a powerful system to identifying or testing compounds with potential therapeutic effect in the treatment of those diseases. Friedreich’s ataxia is an autosomal recessive neurodegenerative disorder, which is characterized by a progressive spinocerebellar and sensory ataxia. Proprioceptive neurons of the dorsal root ganglia (DRG) are the primary affected cells. The disease is triggered by a mutation in the gene FXN which leads to a reduction of the frataxin protein. In order to study the neurophysiopathology of the disease at the cellular and molecular levels, we have established a model of primary cultures of DRG sensory neurons in which we induce the loss of the frataxin protein. With such a model we can alleviate the issues related to the complexity of DRG tissues and low amount of sensory neuron material in adult mouse. Hereby, we provide a protocol of detailed and optimized methods to obtain high yield of healthy mouse DRG sensory neuron in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melli G, Höke A (2009) Dorsal root ganglia sensory neuronal cultures: a tool for drug discovery for peripheral neuropathies. Expert Opin Drug Discovery 4:1035–1045

    Article  CAS  Google Scholar 

  2. Marmigère F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8:114–127

    Article  Google Scholar 

  3. Leinninger GM, Edwards JL, Lipshaw MJ, Feldman EL (2006) Mechanisms of disease: mitochondria as new therapeutic targets in diabetic neuropathy. Nat Clin Pract Neurol 2:620–628

    Article  CAS  Google Scholar 

  4. Estanislao L, Carter K, McArthur J, Olney R, Simpson D, Lidoderm-HIV Neuropathy Group (2004) A randomized controlled trial of 5% lidocaine gel for HIV-associated distal symmetric polyneuropathy. J Acquir Immune Defic Syndr 37:1584–1586

    Article  CAS  Google Scholar 

  5. Lewis RA (2017) Chronic inflammatory demyelinating polyneuropathy. Curr Opin Neurol 30:508–512

    Article  Google Scholar 

  6. McGrath MC (2016) Charcot-Marie-Tooth 1A: a narrative review with clinical and anatomical perspectives. Clin Anat 29:547–554

    Article  CAS  Google Scholar 

  7. Staff NP, Grisold A, Grisold W, Windebank AJ (2017) Chemotherapy-induced peripheral neuropathy: A current review. Ann Neurol 81:772–781

    Article  CAS  Google Scholar 

  8. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  CAS  Google Scholar 

  9. Harding AE, Hewer RL (1983) The heart disease of Friedreich’s Ataxia: a clinical and electrocardiographic study of 115 patients, with an analysis of serial electrocardiographic changes in 30 cases. QJM 52:489–502

    CAS  PubMed  Google Scholar 

  10. Koeppen AH, Mazurkiewicz JE (2013) Friedreich ataxia: neuropathology Revised. J Neuropathol Exp Neurol 72:78–90

    Article  CAS  Google Scholar 

  11. Koeppen AH (2011) Friedreich’s ataxia: Pathology, pathogenesis, and molecular genetics. J Neurol Sci 303:1–12

    Article  CAS  Google Scholar 

  12. Beilschmidt LK, Puccio HM (2014) Mammalian Fe–S cluster biogenesis and its implication in disease. Biochimie 100:48–60

    Article  CAS  Google Scholar 

  13. Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R (2003) DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422:909–913

    Article  CAS  Google Scholar 

  14. Pandolfo M (2009) Friedreich ataxia: the clinical picture. J Neurol 256:3–8

    Article  Google Scholar 

  15. Koeppen AH, Ramirez RL, Becker AB, Bjork ST, Levi S, Santambrogio P, Parsons PJ, Kruger PC, Yang KX, Feustel PJ et al (2015) The pathogenesis of cardiomyopathy in Friedreich Ataxia. PLoS One 10:e0116396

    Article  Google Scholar 

  16. Puccio H, Simon D, Cossée M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186

    Article  CAS  Google Scholar 

  17. Piguet F, Montigny C, de Vaucamps N, Reutenauer L, Eisenmann A, Puccio H (2018) Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich Ataxia. Mol Ther 26(8):1940–1952

    Article  CAS  Google Scholar 

  18. Miranda CJ, Santos MM, Ohshima K, Smith J, Li L, Bunting M, Cossée M, Koenig M, Sequeiros J, Kaplan J et al (2002) Frataxin knockin mouse. FEBS Lett 512:291–297

    Article  CAS  Google Scholar 

  19. Al-Mahdawi S, Pinto RM, Varshney D, Lawrence L, Lowrie MB, Hughes S, Webster Z, Blake J, Cooper JM, King R et al (2006) GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics 88:580–590

    Article  CAS  Google Scholar 

  20. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A et al (1996) Friedreich’s Ataxia: autosomal recessive disease caused by an Intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  CAS  Google Scholar 

  21. Simon D, Seznec H, Gansmuller A, Carelle N, Weber P, Metzger D, Rustin P, Koenig M, Puccio H (2004) Friedreich Ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 24:1987–1995

    Article  CAS  Google Scholar 

  22. Thierbach R, Schulz TJ, Isken F, Voigt A, Mietzner B, Drewes G, von Kleist-Retzow J-C, Wiesner RJ, Magnuson MA, Puccio H et al (2005) Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Hum Mol Genet 14:3857–3864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Aurélie Eisenmann and Alain Martelli for technical assistance. This work was supported by the US Friedreich Ataxia Research Alliance (to H.P.), the Association Française pour l’Ataxie de Friedreich (to H.P.) and the Fondation pour la Recherche Médicale (FRM grant number ECO20160736060 (to O.G.)). This study was supported by the grant ANR-10-LABX-0030-INRT, a French State fund managed by the Agence Nationale de la Recherche under the frame program Investissement d’Avenir ANR-10-IDEX-0002-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Puccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Griso, O., Puccio, H. (2020). Primary Cultures of Pure Embryonic Dorsal Root Ganglia Sensory Neurons as a New Cellular Model for Friedreich’s Ataxia. In: Richard, GF. (eds) Trinucleotide Repeats. Methods in Molecular Biology, vol 2056. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9784-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9784-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9783-1

  • Online ISBN: 978-1-4939-9784-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics