Skip to main content

Evaluation of Oncolytic Virus-Induced Therapeutic Tumor Vaccination Effects in Murine Tumor Models

  • Protocol
  • First Online:
Oncolytic Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2058))

Abstract

Oncolytic virotherapy is rapidly advancing into clinical practice as an appealing strategy for cancer therapy. Studies in the recent decades indicate that immunostimulatory properties of oncolytic viruses (OVs) are crucial for their therapeutic efficacy. The specific lysis of tumor cells and release of tumor associated antigens in the context of an OV infection ensures activation of a tumor-specific immune response. The evidence for induction of a systemic, specific antitumor immune response after OV therapy in preclinical and clinical studies allows to consider oncolytic virotherapy as a type of therapeutic cancer vaccination strategy.

This chapter describes methods to evaluate the therapeutic tumor vaccination effect of an oncolytic virus in murine tumor models. Protocols for a tumor rechallenge experiment in vivo and tumor cell specific splenocyte restimulation in vitro are included, as well as protocols for analysis of memory T cell subpopulations in tumor draining lymph nodes using flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galluzzi L, Vacchelli E, Bravo-San Pedro J-M, Buqué A, Senovilla L, Baracco EE et al (2014) Classification of current anticancer immunotherapies. Oncotarget 5(24):12472–12508

    Article  Google Scholar 

  2. Guo C, Manjili M, Subjeck J, Sarkar D, Fisher P, Wang X (2013) Therapeutic cancer vaccines: past, present and future. Adv Cancer Res 119:421–475

    Article  CAS  Google Scholar 

  3. Russell SJ, Barber GN (2018) Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell 33(4):599–605

    Article  CAS  Google Scholar 

  4. Bell JC, McFadden G (2014) Viruses for tumor therapy John. Cell Host Microbe 15(3):260–265

    Article  CAS  Google Scholar 

  5. Escors D (2014) Tumour immunogenicity, antigen presentation, and immunological barriers in cancer immunotherapy. N J Sci 2014:734515

    Google Scholar 

  6. Sánchez-Paulete DAR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, Sancho D, Melero I (2017) Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol 28(Suppl_12):44–55

    Article  Google Scholar 

  7. Prestwich FRJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F (2008) Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther 8(10):1581–1588

    Article  CAS  Google Scholar 

  8. Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788

    Article  CAS  Google Scholar 

  9. Galanis E, Atherton PJ, Maurer MJM, Knutson KL, Dowdy SC, Cliby WA et al (2014) Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res 75(1):22–30

    Article  Google Scholar 

  10. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567

    Article  CAS  Google Scholar 

  11. Sobol PT, Boudreau JE, Stephenson K, Wan Y, Lichty BD, Mossman KL (2009) Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Ther 19(2):335–344

    Article  Google Scholar 

  12. Li X, Wang P, Li H, Du X, Liu M, Huang Q et al (2017) The efficacy of oncolytic adenovirus is mediated by T-cell responses against virus and tumor in Syrian hamster model. Clin Cancer Res 23(1):239–249

    Article  Google Scholar 

  13. Aitken A, Roy D, Bourgeois-Daigneault M-C (2017) Taking a stab at cancer; oncolytic virus-mediated anti-cancer vaccination strategies. Biomedicine 5(1):3

    Google Scholar 

  14. Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK et al (2014) CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther 22(11)

    Article  CAS  Google Scholar 

  15. Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF et al (2013) Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther 24(7):644–654

    Article  CAS  Google Scholar 

  16. Speck T, Heidbuechel J, Veinalde R, Jaeger D, von Kalle C, Ball CR, Ungerechts G, Engeland CE (2018) Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin Cancer Res 24(9):2128–2138

    Article  CAS  Google Scholar 

  17. Veinalde R, Grossardt C, Hartmann L, Bourgeois-Daigneault M-C, Bell JC, Jäger D et al (2017) Oncolytic measles virus encoding interleukin-12 mediates potent anti-tumor effects through T cell activation. OncoImmunology 6(4):e1285992

    Article  Google Scholar 

  18. Robbins PF, Kantor JA, Salgaller M, Hand PH, Fernsten PD, Schlom J (1991) Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res 51(14):3657–3662

    CAS  PubMed  Google Scholar 

  19. Cossarizza A, Chang H, Radbruch A, Annunziato F, Bacher P, Barnaba V et al (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47(10):1584–1797

    Article  CAS  Google Scholar 

  20. Puré E, Cuff CA (2001) A crucial role for CD44 in inflammation. Trends Mol Med 7(5):213–221

    Article  Google Scholar 

  21. Sallusto MF, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712

    Article  CAS  Google Scholar 

  22. Veinalde R (2017) Unraveling determinants of efficacy in measles immunovirotherapy. Ruprecht-Karls-Universität Heidelberg, Heidelberg

    Google Scholar 

Download references

Acknowledgments

The author acknowledges Dr. C. E. Engeland for support and consultation for development of the described protocols. This work was supported by the European Regional Development Fund project no. 1.1.1.2/VIAA/2/18/292 (1.1.1.2/16/I/001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rūta Veinalde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Veinalde, R. (2020). Evaluation of Oncolytic Virus-Induced Therapeutic Tumor Vaccination Effects in Murine Tumor Models. In: Engeland, C. (eds) Oncolytic Viruses. Methods in Molecular Biology, vol 2058. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9794-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9794-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9793-0

  • Online ISBN: 978-1-4939-9794-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics