Skip to main content

Protein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systems

  • Protocol
  • First Online:
Histidine Phosphorylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2077))

Abstract

The ability to perceive the environment, an essential attribute in living organisms, is linked to the evolution of signaling proteins that recognize specific signals and execute predetermined responses. Such proteins constitute concerted systems that can be as simple as a unique protein, able to recognize a ligand and exert a phenotypic change, or extremely complex pathways engaging dozens of different proteins which act in coordination with feedback loops and signal modulation. To understand how cells sense their surroundings and mount specific adaptive responses, we need to decipher the molecular workings of signal recognition, internalization, transfer, and conversion into chemical changes inside the cell. Protein allostery and dynamics play a central role. Here, we review recent progress on the study of two-component systems, important signaling machineries of prokaryotes and lower eukaryotes. Such systems implicate a sensory histidine kinase and a separate response regulator protein. Both components exploit protein flexibility to effect specific conformational rearrangements, modulating protein–protein interactions, and ultimately transmitting information accurately. Recent work has revealed how histidine kinases switch between discrete functional states according to the presence or absence of the signal, shifting key amino acid positions that define their catalytic activity. In concert with the cognate response regulator’s allosteric changes, the phosphoryl-transfer flow during the signaling process is exquisitely fine-tuned for proper specificity, efficiency and directionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao R, Stock AM (2017) Quantitative kinetic analyses of shutting off a two-component system. MBio 8(3):e00412–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hart Y, Alon U (2013) The utility of paradoxical components in biological circuits. Mol Cell 49(2):213–221

    Article  CAS  PubMed  Google Scholar 

  3. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  4. Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23(5):257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dupre E, Lesne E, Guerin J, Lensink MF, Verger A, de Ruyck J, Brysbaert G, Vezin H, Locht C, Antoine R, Jacob-Dubuisson F (2015) Signal transduction by BvgS sensor kinase: binding of modulator nicotinate affects the conformation and dynamics of the entire periplasmic moiety. J Biol Chem 290(38):23307–23319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neiditch MB, Federle MJ, Pompeani AJ, Kelly RC, Swem DL, Jeffrey PD, Bassler BL, Hughson FM (2006) Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126(6):1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428(19):3752–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Casino P, Miguel-Romero L, Marina A (2014) Visualizing autophosphorylation in histidine kinases. Nat Commun 5:3258

    Article  PubMed  CAS  Google Scholar 

  9. Mechaly AE, Sassoon N, Betton JM, Alzari PM (2014) Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol 12(1):e1001776

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pontiggia F, Pachov DV, Clarkson MW, Villali J, Hagan MF, Pande VS, Kern D (2015) Free energy landscape of activation in a signalling protein at atomic resolution. Nat Commun 6:7284

    Article  CAS  PubMed  Google Scholar 

  11. Bhate MP, Molnar KS, Goulian M, DeGrado WF (2015) Signal transduction in histidine kinases: insights from new structures. Structure 23(6):981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao R, Stock AM (2010) Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr Opin Microbiol 13(2):160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188(12):4169–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386(6623):414–417

    Article  CAS  PubMed  Google Scholar 

  15. Cock PJ, Whitworth DE (2007) Evolution of prokaryotic two-component system signalling pathways: gene fusions and fissions. Mol Biol Evol 24(11):2355–2357

    Article  CAS  PubMed  Google Scholar 

  16. Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13(2):219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lou YC, Weng TH, Li YC, Kao YF, Lin WF, Peng HL, Chou SH, Hsiao CD, Chen C (2015) Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Nat Commun 6:8838

    Article  PubMed  Google Scholar 

  18. Narayanan A, Kumar S, Evrard AN, Paul LN, Yernool DA (2014) An asymmetric heterodomain interface stabilizes a response regulator-DNA complex. Nat Commun 5:3282

    Article  PubMed  CAS  Google Scholar 

  19. Gushchin I, Melnikov I, Polovinkin V, Ishchenko A, Yuzhakova A, Buslaev P, Bourenkov G, Grudinin S, Round E, Balandin T, Borshchevskiy V, Willbold D, Leonard G, Büldt G, Popov A, Gordeliy V (2017) Mechanism of transmembrane signalling by sensor histidine kinases. Science 356(6342):eaah6345

    Article  PubMed  CAS  Google Scholar 

  20. Marina A, Waldburger CD, Hendrickson WA (2005) Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J 24(24):4247–4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rivera-Cancel G, Ko W-h, Tomchick DR, Correa F, Gardner KH (2014) Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation. Proc Natl Acad Sci 111:17839–17844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Albanesi D, Martin M, Trajtenberg F, Mansilla MC, Haouz A, Alzari PM, de Mendoza D, Buschiazzo A (2009) Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci U S A 106(38):16185–16190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53(4):450–490

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hess JF, Oosawa K, Matsumura P, Simon MI (1987) Protein phosphorylation is involved in bacterial chemotaxis. Proc Natl Acad Sci 84:7609–7613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25(1):24–28

    Article  CAS  PubMed  Google Scholar 

  26. Grebe TW, Stock JB (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41:139–227

    Article  CAS  PubMed  Google Scholar 

  27. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112

    Article  CAS  PubMed  Google Scholar 

  28. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(Database issue):D279–D285

    Article  CAS  PubMed  Google Scholar 

  29. Galperin MY, Nikolskaya AN (2007) Identification of sensory and signal-transducing domains in two-component signalling systems. Methods Enzymol 422:47–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ulrich LE, Zhulin IB (2010) The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38(Database issue):D401–D407

    Article  CAS  PubMed  Google Scholar 

  31. Srivastava SK, Rajasree K, Fasim A, Arakere G, Gopal B (2014) Influence of the AgrC-AgrA complex on the response time of Staphylococcus aureus quorum sensing. J Bacteriol 196(15):2876–2888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Herrou J, Crosson S, Fiebig A (2017) Structure and function of HWE/HisKA2-family sensor histidine kinases. Curr Opin Microbiol 36:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anantharaman V, Balaji S, Aravind L (2006) The signalling helix: a common functional theme in diverse signalling proteins. Biol Direct 1:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Singh M, Berger B, Kim PS, Berger JM, Cochran AG (1998) Computational learning reveals coiled coil-like motifs in histidine kinase linker domains. Proc Natl Acad Sci U S A 95(6):2738–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trajtenberg F, Imelio JA, Machado MR, Larrieux N, Marti MA, Obal G, Mechaly AE, Buschiazzo A (2016) Regulation of signalling directionality revealed by 3D snapshots of a kinase:regulator complex in action. eLife 5:e21422

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saita E, Abriata LA, Tsai YT, Trajtenberg F, Lemmin T, Buschiazzo A, Dal Peraro M, de Mendoza D, Albanesi D (2015) A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol Microbiol 98(2):258–271

    Article  CAS  PubMed  Google Scholar 

  37. Purcell EB, McDonald CA, Palfey BA, Crosson S (2010) An analysis of the solution structure and signalling mechanism of LovK, a sensor histidine kinase integrating light and redox signals. Biochemistry 49(31):6761–6770

    Article  CAS  PubMed  Google Scholar 

  38. Monzel C, Unden G (2015) Transmembrane signalling in the sensor kinase DcuS of Escherichia coli: a long-range piston-type displacement of transmembrane helix 2. Proc Natl Acad Sci U S A 112(35):11042–11047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yusuf R, Nguyen TL, Heininger A, Lawrence RJ, Hall BA, Draheim RR (2018) In vivo cross-linking and transmembrane helix dynamics support a bidirectional non-piston model of signalling within E. coli EnvZ. bioRxiv. https://doi.org/10.1101/206888

  40. Wang LC, Morgan LK, Godakumbura P, Kenney LJ, Anand GS (2012) The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. EMBO J 31(11):2648–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang X, Vallurupalli P, Vu A, Lee K, Sun S, Bai WJ, Wu C, Zhou H, Shea JE, Kay LE, Dahlquist FW (2014) The linker between the dimerization and catalytic domains of the CheA histidine kinase propagates changes in structure and dynamics that are important for enzymatic activity. Biochemistry 53(5):855–861

    Article  CAS  PubMed  Google Scholar 

  42. Bhatnagar J, Borbat PP, Pollard AM, Bilwes AM, Freed JH, Crane BR (2010) Structure of the ternary complex formed by a chemotaxis receptor signalling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy. Biochemistry 49(18):3824–3841

    Article  CAS  PubMed  Google Scholar 

  43. Gushchin I, Gordeliy V (2018) Transmembrane signal transduction in two-component systems: piston, scissoring, or helical rotation? BioEssays 40(2):1700197. https://doi.org/10.1002/bies.201700197

    Article  CAS  Google Scholar 

  44. Moglich A, Ayers RA, Moffat K (2009) Design and signalling mechanism of light-regulated histidine kinases. J Mol Biol 385(5):1433–1444

    Article  CAS  PubMed  Google Scholar 

  45. Huynh TN, Noriega CE, Stewart V (2013) Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signalling. Mol Microbiol 88(3):459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhate MP, Lemmin T, Kuenze G, Mensa B, Ganguly S, Peters J, Schmidt N, Pelton JG, Gross C, Meiler J, DeGrado WF (2018) Structure and function of the transmembrane domain of NsaS, an antibiotic sensing histidine kinase in S. aureus. J Am Chem Soc 140(24):7471–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Casino P, Rubio V, Marina A (2009) Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139(2):325–336

    Article  CAS  PubMed  Google Scholar 

  48. Volkman BF, Lipson D, Wemmer DE, Kern D (2001) Two-state allosteric behavior in a single-domain signalling protein. Science 291(5512):2429–2433

    Article  CAS  PubMed  Google Scholar 

  49. Minato Y, Ueda T, Machiyama A, Iwai H, Shimada I (2017) Dynamic domain arrangement of CheA-CheY complex regulates bacterial thermotaxis, as revealed by NMR. Sci Rep 7(1):16462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jiang P, Peliska JA, Ninfa AJ (2000) Asymmetry in the autophosphorylation of the two-component regulatory system transmitter protein nitrogen regulator II of Escherichia coli. Biochemistry 39(17):5057–5065

    Article  CAS  PubMed  Google Scholar 

  51. Trajtenberg F, Grana M, Ruetalo N, Botti H, Buschiazzo A (2010) Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. J Biol Chem 285(32):24892–24903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bauer J, Reiss K, Veerabagu M, Heunemann M, Harter K, Stehle T (2013) Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Mol Plant 6(3):959–970

    Article  CAS  PubMed  Google Scholar 

  53. Bell CH, Porter SL, Strawson A, Stuart DI, Armitage JP (2010) Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex. PLoS Biol 8(2):e1000306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mo G, Zhou H, Kawamura T, Dahlquist FW (2012) Solution structure of a complex of the histidine autokinase CheA with its substrate CheY. Biochemistry 51(18):3786–3798

    Article  CAS  PubMed  Google Scholar 

  55. Varughese KI, Tsigelny I, Zhao H (2006) The crystal structure of beryllofluoride Spo0F in complex with the phosphotransferase Spo0B represents a phosphotransfer pretransition state. J Bacteriol 188(13):4970–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Willett JW, Herrou J, Briegel A, Rotskoff G, Crosson S (2015) Structural asymmetry in a conserved signalling system that regulates division, replication, and virulence of an intracellular pathogen. Proc Natl Acad Sci U S A 112(28):E3709–E3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao X, Copeland DM, Soares AS, West AH (2008) Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. J Mol Biol 375(4):1141–1151

    Article  CAS  PubMed  Google Scholar 

  58. Yamada S, Sugimoto H, Kobayashi M, Ohno A, Nakamura H, Shiro Y (2009) Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17(10):1333–1344

    Article  CAS  PubMed  Google Scholar 

  59. Capra EJ, Perchuk BS, Skerker JM, Laub MT (2012) Adaptive mutations that prevent crosstalk enable the expansion of paralogous signalling protein families. Cell 150(1):222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Villanueva M, Garcia B, Valle J, Rapun B, Ruiz de Los Mozos I, Solano C, Marti M, Penades JR, Toledo-Arana A, Lasa I (2018) Sensory deprivation in Staphylococcus aureus. Nat Commun 9(1):523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Willett JW, Tiwari N, Muller S, Hummels KR, Houtman JC, Fuentes EJ, Kirby JR (2013) Specificity residues determine binding affinity for two-component signal transduction systems. MBio 4(6):e00420–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3(10):e334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Podgornaia AI, Casino P, Marina A, Laub MT (2013) Structural basis of a rationally rewired protein-protein interface critical to bacterial signalling. Structure 21(9):1636–1647

    Article  CAS  PubMed  Google Scholar 

  64. Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, Goulian M, Laub MT (2008) Rewiring the specificity of two-component signal transduction systems. Cell 133(6):1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Podgornaia AI, Laub MT (2015) Protein evolution. Pervasive degeneracy and epistasis in a protein-protein interface. Science 347(6222):673–677

    Article  CAS  PubMed  Google Scholar 

  66. Imelio JA, Larrieux N, Mechaly AE, Trajtenberg F, Buschiazzo A (2017) Snapshots of the signalling complex DesK:DesR in different functional states using rational mutagenesis and X-ray crystallography. Bio-Protocol 7(16):e2510

    Article  PubMed  PubMed Central  Google Scholar 

  67. Huynh TN, Stewart V (2011) Negative control in two-component signal transduction by transmitter phosphatase activity. Mol Microbiol 82(2):275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pazy Y, Motaleb MA, Guarnieri MT, Charon NW, Zhao R, Silversmith RE (2010) Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate. Proc Natl Acad Sci U S A 107(5):1924–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huynh TN, Noriega CE, Stewart V (2010) Conserved mechanism for sensor phosphatase control of two-component signalling revealed in the nitrate sensor NarX. Proc Natl Acad Sci U S A 107(49):21140–21145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kamberov ES, Atkinson MR, Chandran P, Ninfa AJ (1994) Effect of mutations in Escherichia coli glnL (ntrB), encoding nitrogen regulator II (NRII or NtrB), on the phosphatase activity involved in bacterial nitrogen regulation. J Biol Chem 269(45):28294–28299

    CAS  PubMed  Google Scholar 

  71. Dutta R, Inouye M (1996) Reverse phosphotransfer from OmpR to EnvZ in a kinase−/phosphatase+ mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J Biol Chem 271(3):1424–1429

    Article  CAS  PubMed  Google Scholar 

  72. Hsing W, Silhavy TJ (1997) Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. J Bacteriol 179(11):3729–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tindall MJ, Porter SL, Maini PK, Armitage JP (2010) Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase. PLoS Comput Biol 6(8):e1000896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Pena-Sandoval GR, Kwon O, Georgellis D (2005) Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. J Bacteriol 187(9):3267–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Uhl MA, Miller JF (1996) Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J Biol Chem 271(52):33176–33180

    Article  CAS  PubMed  Google Scholar 

  76. Kenney LJ (2010) How important is the phosphatase activity of sensor kinases? Curr Opin Microbiol 13(2):168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Batchelor E, Goulian M (2003) Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 100(2):691–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Siryaporn A, Goulian M (2008) Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli. Mol Microbiol 70(2):494–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mechaly AE, Soto Diaz S, Sassoon N, Buschiazzo A, Betton JM, Alzari PM (2017) Structural coupling between autokinase and phosphotransferase reactions in a bacterial histidine kinase. Structure 25(6):939–944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by grant # FCE 1_2017_1_136291 (ANII, Uruguay). We wish to thank Alberto Marina for discussions and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Buschiazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trajtenberg, F., Buschiazzo, A. (2020). Protein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systems. In: Eyers, C. (eds) Histidine Phosphorylation. Methods in Molecular Biology, vol 2077. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9884-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9884-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9883-8

  • Online ISBN: 978-1-4939-9884-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics