Skip to main content

Analysis of 1- and 3-Phosphohistidine (pHis) Protein Modification Using Model Enzymes Expressed in Bacteria

  • Protocol
  • First Online:
Histidine Phosphorylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2077))

Abstract

Despite the discovery of protein histidine (His) phosphorylation nearly six decades ago, difficulties in measuring and quantifying this unstable post-translational modification (PTM) have limited its mechanistic analysis in prokaryotic and eukaryotic signaling. Here, we describe reliable procedures for affinity purification, cofactor-binding analysis and antibody-based detection of phosphohistidine (pHis), on the putative human His kinases NME1 (NDPK-A) and NME2 (NDPK-B) and the glycolytic phosphoglycerate mutase PGAM1. By exploiting isomer-specific monoclonal N1-pHis and N3-pHis antibodies, we describe robust protocols for immunological detection and isomer discrimination of site-specific pHis, including N3-pHis on His 11 of PGAM1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond Ser B Biol Sci 367:2513–2516

    Article  CAS  Google Scholar 

  2. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130

    Article  CAS  Google Scholar 

  3. Haydon CE, Eyers PA, Aveline-Wolf LD et al (2003) Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol Cell Proteomics 2:1055–1067

    Article  CAS  Google Scholar 

  4. Schweppe RE, Haydon CE, Lewis TS et al (2003) The characterization of protein post-translational modifications by mass spectrometry. Acc Chem Res 36:453–461

    Article  CAS  Google Scholar 

  5. Fuhs SR, Meisenhelder J, Aslanian A et al (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation. Cell 162:198–210

    Article  CAS  Google Scholar 

  6. Kee JM, Oslund RC, Perlman DH et al (2013) A pan-specific antibody for direct detection of protein histidine phosphorylation. Nat Chem Biol 9:416–421

    Article  CAS  Google Scholar 

  7. Hardman G et al. (2017) Extensive non-canonical phosphorylation in human cells revealed using strong-anion exchange-mediated phosphoproteomics. bioRxiv. doi: 10.1101/202820

    Google Scholar 

  8. Boyer PD, Deluca M, Ebner KE et al (1962) Identification of phosphohistidine in digests from a probable intermediate of oxidative phosphorylation. J Biol Chem 237:PC3306–PC3308

    CAS  PubMed  Google Scholar 

  9. Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7:44–51

    Article  CAS  Google Scholar 

  10. Puttick J, Baker EN, Delbaere LT (2008) Histidine phosphorylation in biological systems. Biochim Biophys Acta 1784:100–105

    Article  CAS  Google Scholar 

  11. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  Google Scholar 

  12. Chen Y, Gallois-Montbrun S, Schneider B et al (2003) Nucleotide binding to nucleoside diphosphate kinases: X-ray structure of human NDPK-A in complex with ADP and comparison to protein kinases. J Mol Biol 332:915–926

    Article  CAS  Google Scholar 

  13. Srivastava S, Panda S, Li Z et al (2016) Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. elife 5:pii: e16093

    Article  Google Scholar 

  14. Attwood PV, Muimo R (2018) The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. Lab Investig 98:283–290

    Article  CAS  Google Scholar 

  15. Attwood PV, Wieland T (2015) Nucleoside diphosphate kinase as protein histidine kinase. Naunyn Schmiedeberg's Arch Pharmacol 388:153–160

    Article  CAS  Google Scholar 

  16. Vander Heiden MG, Locasale JW, Swanson KD et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    Article  CAS  Google Scholar 

  17. Panda S, Srivastava S, Li Z et al (2016) Identification of PGAM5 as a mammalian protein histidine phosphatase that plays a central role to negatively regulate CD4(+) T cells. Mol Cell 63:457–469

    Article  CAS  Google Scholar 

  18. Byrne DP, Li Y, Ngamlert P et al (2018) New tools for evaluating protein tyrosine sulfation: tyrosylprotein sulfotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors. Biochem J 475:2435–2455

    Article  CAS  Google Scholar 

  19. Green R, Rogers EJ (2013) Transformation of chemically competent E. coli. Methods Enzymol 529:329–336

    Article  CAS  Google Scholar 

  20. Byrne DP, Vonderach M, Ferries S et al (2016) cAMP-dependent protein kinase (PKA) complexes probed by complementary differential scanning fluorimetry and ion mobility-mass spectrometry. Biochem J 473:3159–3175

    Article  CAS  Google Scholar 

  21. Scutt PJ, Chu ML, Sloane DA et al (2009) Discovery and exploitation of inhibitor-resistant aurora and polo kinase mutants for the analysis of mitotic networks. J Biol Chem 284:15880–15893

    Article  CAS  Google Scholar 

  22. Foulkes DM, Byrne DP, Yeung W et al (2018) Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Sci Signal 11:pii: eaat7951

    Article  Google Scholar 

  23. Murphy JM, Zhang Q, Young SN et al (2014) A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochem J 457:323–334

    Article  CAS  Google Scholar 

  24. Mohanty S, Oruganty K, Kwon A et al (2016) Hydrophobic core variations provide a structural framework for tyrosine kinase evolution and functional specialization. PLoS Genet 12:e1005885

    Article  Google Scholar 

  25. Rudolf AF, Skovgaard T, Knapp S et al (2014) A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination. PLoS One 9:e98800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Eyers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clubbs Coldron, A.K.M., Byrne, D.P., Eyers, P.A. (2020). Analysis of 1- and 3-Phosphohistidine (pHis) Protein Modification Using Model Enzymes Expressed in Bacteria. In: Eyers, C. (eds) Histidine Phosphorylation. Methods in Molecular Biology, vol 2077. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9884-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9884-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9883-8

  • Online ISBN: 978-1-4939-9884-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics