Skip to main content

Delivery of Whole Tumor Lysate into Dendritic Cells for Cancer Vaccination

  • Protocol
Electroporation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 423))

Abstract

Results from multiple human studies have continued to spur the development of dendritic cells (DCs) as therapeutic vaccines for the treatment of cancer, chronic viral infections, and autoimmune diseases. The antigen-specific activity of DCs is dependent on the ability of the DCs to take up and process tumor-associated antigens for presentation to the immune system. Although immature DCs have been shown to naturally take up tumor-associated antigens by phagocytosis, approaches that significantly affect antigen delivery need further evaluation, especially if such methodologies can be demonstrated to result in the elicitation of more robust and comprehensive immune responses. We have developed a rapid, robust, scalable, and regulatory-compliant process for loading DCs with whole tumor lysate. The use of whole tumor lysate facilitates the generation of a more robust immune response targeting multiple unique antigenic determinants in patient's tumors and likely reduces the tumor's potential of immune escape. We demonstrate that DCs electroloaded with tumor lysate elicit significantly stronger antitumor responses both in a tumor challenge model and in a therapeutic vaccination model for preexisting metastasic disease. These effects are observed in a processing scheme that requires 20- to 40-fold lower amounts of tumor lysate when compared with the standard coincubation/coculture methods employed in loading DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Neumann, E., Schaefer-Ridder, M., Wand, Y., and Hofschneider, P. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    CAS  PubMed  Google Scholar 

  2. 2. Xie, T.D., Sun, L., and Tsong, T.Y. (1990) Study of mechanisms of electric field-induced DNA transfection. I. DNA entry by surface binding and diffusion through membrane pores. Biophys. J. 58, 13–19.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Tsong, T.Y. (1991) Electroporation of cell membranes. Biophys. J. 60, 297–306.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Salek, A., Schnettler, R. and Zimmermann, U. (1992) Stably inherited killer activity in industrial yeast strains obtained by electrotransformation. FEMS Micro Lett. 75, 103–109.

    Article  CAS  Google Scholar 

  5. 5. Li, L.H., Shivakumar, R., Feller, S., et al. (2002) Highly efficient, large volume flow electroporation. Tech. Cancer Res. Treat. 1, 341–349.

    CAS  Google Scholar 

  6. 6. Weiss, J.M., Shivakumar, R., Feller, S., et al. (2004) Rapid, in vivo, evaluation of anti-angiogenic and anti-neoplastic gene products by non-viral transfection of tumor cells. Cancer Gene Ther. 11, 346–353.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Li, S. (2004) Electroporation gene therapy: new developments in vivo and in vitro. Curr. Gene Ther. 4, 309–316.

    CAS  PubMed  Google Scholar 

  8. 8. Breckpot, K., Heirman, C., Neyns, B., and Thielemans, K. (2004) Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J. Gene Med. 6, 1175–1188.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Ribas, A. (2005) Genetically modified dendritic cells for cancer immunotherapy. Curr. Gene Ther. 5, 619–628.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Weiss, J.M., Allen, C., Shivakumar, R., Feller, S., Li, L.H., and Liu, L.N. (2005) Efficient responses in a murine renal tumor model by electroloading dendritic cells with whole-tumor lysate. J. Immunother. 28, 542–550.

    Article  PubMed  Google Scholar 

  11. 11. Geiger, J.D., Hutchinson, R.J., Hohenkirk, L.F., et al. (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res. 61, 8513–8519.

    CAS  PubMed  Google Scholar 

  12. 12. Thurnher, M., Rieser, C., Holtl, L., Papesh, C., Ramoner, R., and Bartsch, G. (1998) Dendritic cell-based immunotherapy of renal cell carcinoma. Urol. Int. 61, 67–71.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Schnurr, M., Galambos, P., Scholz, C., et al. (2001) Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res. 61, 6445–6450.

    CAS  PubMed  Google Scholar 

  14. 14. Wen, Y.J., Min, R., Tricot, G., Barlogie, B., and Yi, Q. (2002) Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood. 99, 3280–3285.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Parajuli, P. and Sloan, A.E. (2004) Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest. 22, 479–480.

    Article  Google Scholar 

  16. 16. Berard, F., Blanco, P., Davoust, J., et al. (2000) Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J. Exp. Med. 192, 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Shibagaki, N. and Udey M.C. (2003) Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma. Eur. J. Immunol. 33, 850–860.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Hadzantonis, M. and O’Neill, H. (1999) Review: dendritic cell immunotherapy for melanoma. Cancer Biother. Radiopharm. 14, 11–22.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Fratantoni, J.C., Dzekunov, S., Singh, V., and Liu, L.N. (2003) A non-viral gene delivery system designed for clinical use. Cytotherapy. 5, 208–210.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Fratantoni, J.C., Dzekunov, S., Wang, S., and Liu, L.N. (2004) A scalable cell-loading system for non-viral gene delivery and other applications. Bioprocess. J. 3, 49–54.

    Google Scholar 

Download references

Acknowledgments

The authors thank Nicholas Chopas for instrumentation assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this protocol

Cite this protocol

Liu, L.N., Shivakumar, R., Allen, C., Fratantoni, J.C. (2008). Delivery of Whole Tumor Lysate into Dendritic Cells for Cancer Vaccination. In: Li, S. (eds) Electroporation Protocols. Methods in Molecular Biology™, vol 423. Humana Press. https://doi.org/10.1007/978-1-59745-194-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-194-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-877-5

  • Online ISBN: 978-1-59745-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics