Skip to main content

Transdermal Drug Delivery Systems: Skin Perturbation Devices

  • Protocol
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 437))

Abstract

Human skin serves a protective function by imposing physicochemical limitations to the type of permeant that can traverse the barrier. For a drug to be delivered passively via the skin it needs to have a suitable lipophilicity and a molecular weight < 500 Da. The number of commercially available products based on transdermal or dermal delivery has been limited by these requirements. In recent years various passive and active strategies have emerged to optimize delivery. The passive approach entails the optimization of formulation or drug carrying vehicle to increase skin permeability. However, passive methods do not greatly improve the permeation of drugs with molecular weights >500 Da. In contrast, active methods, normally involving physical or mechanical methods of enhancing delivery, have been shown to be generally superior. The delivery of drugs of differing lipophilicity and molecular weight, including proteins, peptides and oligonucletides, has been shown to be improved by active methods such as iontophoresis, electroporation, mechanical perturbation and other energy-related techniques such as ultrasound and needleless injection. This chapter details one practical example of an active skin abrasion device to demonstrate the success of such active methods. The in vitro permeation of acyclovir through human epidermal membrane using a rotating brush abrasion device was compared with acyclovir delivery using iontophoresis. It was found that application of brush treatment for 10 s at a pressure of 300 N m−2 was comparable to 10 min of iontophoresis. The observed enhancement of permeability observed using the rotating brush was a result of disruption of the cells of the stratum corneum, causing a reduction of the barrier function of the skin. However, for these novel delivery methods to succeed and compete with those already on the market, the prime issues that require consideration include device design and safety, efficacy, ease of handling, and cost-effectiveness. This chapter provides a detailed review of the next generation of active delivery technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Elias, P.M. (1983) “Epidermal lipids, barrier function and desquamation”, J. Invest. Dermatol. 80, 44–49.

    Article  CAS  Google Scholar 

  2. 2. Pirot, F., Kalia, Y.N., Stinchcomb, A.L., Keating, G., Bunge, A. Guy, R.H. (1997) “Characterization of the permeability barrier of human skin in vivo. Proc. Nat. Acad. Sci. U.S.A. 94, 1562–1567.

    Article  CAS  Google Scholar 

  3. 3. Scheuplein, R.J. Blank, I.H. (1971) “Permeability of the skin”, Physiol. Rev. 51, 702–747.

    CAS  Google Scholar 

  4. 4. Flynn, G., Yalkowsky, S.H. Roseman, T.J. (1974) “Mass transport phenomena and models”, J. Pharm. Sci. 63, 479–510.

    Article  CAS  Google Scholar 

  5. 5. Cleary, G.W. (1993). “Transdermal delivery systems; a medical rationale”, In: Shah, V.P. and Maibach, H.I., eds., Topical drug bioavailability, bioequivalence and penetration. Plenum, New York, pp. 17–68.

    Google Scholar 

  6. 6. Henzel, M.R. Loomba, P.K. (2003) “Transdermal delivery of sex steroids for hormone replacement therapy and contraception. A review of principles and practice”. J. Reprod. Med. 48, 525–540.

    Google Scholar 

  7. 7. Kormic, C.A., Santiago- Palma, J., Moryll, N., Payne, R. Obbens, E.A. (2003) “Benefit-risk assessment of transdermal fentanyl for the treatment of chronic pain”. Drug Saf. 26, 951–973.

    Article  Google Scholar 

  8. 8. Varvel, J.R., Shafer, S.L., Hwang, S.S., Coen, P.A. Stanski, D.R. (1989) “Absorption characteristics of transdermally administered fentanyl”. Anaesthesiology. 70, 928.

    Article  CAS  Google Scholar 

  9. 9. Yang, S.I., Park, H.Y., Lee. S.H., Lee, S.J., Han, O.Y., Lim, S.C., Jang, C.G., Lee, W.S., Shin, H.Y., Kim, J.J. Lee, S.Y, (2004) “Transdermal eperisone elicits more potent and longer-lasting muscle relaxation than oral operisone”. Pharmacology. 71, 150–156.

    Article  CAS  Google Scholar 

  10. 10. Cramer, M.P. Saks, S.R. (1994) “Translating safety, efficacy and compliance into economic value for controlled release dosage forms”. Pharmacoeconomics. 5, 482–504.

    Article  CAS  Google Scholar 

  11. 11. Payne, R., Mathias, S.D., Pasta, D.J., Wanke, L.A., Williams, R. Mahmoud, R. (1998) “Quality of life and cancer pain: satisfaction and side effects with transdermal fentanyl versus oral morphine”. J. Clin. Oncol. 16, 1588–1593.

    CAS  Google Scholar 

  12. 12. Jarupanich, T., Lamlertkittikul, S. Chandeying, V. (2003) “Efficacy, safety and acceptability of a seven-day, transdermal estradiol patch for estrogen replacement therapy”. J. Med. Assoc. Thai. 86, 836–845.

    Google Scholar 

  13. 13. Archer, D.F., Cullins, V., Creasy, D.W. Fisher, A.C. (2004) “The impact of improved compliance with a weekly contraceptive transdermal system (Ortho Evra) on contraceptive efficacy”. Contraception. 69, 189–195.

    Article  CAS  Google Scholar 

  14. 14. Long, C. (2002) “Common skin disorders and their topical treatment”. In: Walters, K.A., ed., Dermatological and transdermal formulations. Marcel Dekker, New York, pp. 41–60.

    Google Scholar 

  15. 15. Whittington, R. Faulds, D. (1994) “Hormone replacement therapy: I. A pharmacoeconomic appraisal of its therapeutic use in menopausal symptoms and urogenital estrogen deficiency”. Pharmacoeconomics. 5, 419–445. Review. Erratum in: Pharmacoeconomics (1995), 8, 244.

    Article  CAS  Google Scholar 

  16. 16. Frei, A., Andersen, S., Hole, P. Jensen, N.H. (2003) “A one year health economic model comparing transdermal fentanyl with sustained-release morphine in the treatment of chronic non-cancer pain”. J. Pain Palliat. Care. Pharmacother. 17, 5–26.

    Google Scholar 

  17. 17. Bos, J.D. Meinardi, M.M. (2000) “The 500 Dalton rule for skin penetration of chemical compounds and drugs”. Exp. Dermatol. 9, 165–169.

    Article  CAS  Google Scholar 

  18. 18. Yano, T., Nagakawa, A., Tsuji, M. Noda, K. (1986) “Skin permeability of various non-steroidal anti-inflammatory drugs in man”. Life Sci. 39, 1043–1050.

    Article  CAS  Google Scholar 

  19. 19. Southwell, S., Barry, B.W. Woodford, R. (1984) “Variations in permeability of human skin within and between specimens”. Int. J. Pharm. 18, 299–309.

    Article  CAS  Google Scholar 

  20. 20. Larsen, R.H., Nielsen, F., Søresen, J.A., Nielsen, J.B. (2003) “Dermal penetration of fentanyl: inter- and intraindividual variations”. Pharmcol. Toxicol. 93, 244–248.

    Article  CAS  Google Scholar 

  21. 21. Steinsträsser, I. Merkle, H.P. (1995) “Dermal metabolism of topically applied drugs: pathways and models reconsidered”. Pharm. Acta. Helv. 70, 3–24.

    Article  Google Scholar 

  22. 22. Hogan, D.J. Maibach, H.I. (1990) “Adverse dermatologic reactions to transdermal drug delivery systems”. J. Am. Acad. Dermatol. 22, 811–814.

    Article  CAS  Google Scholar 

  23. 23. Carmichael, A.J. (1994) “Skin sensitivity and transdermal drug delivery. A review of the problem”. Drug Saf. 10, 151–159.

    Article  CAS  Google Scholar 

  24. 24. Toole, J., Silagy, S., Maric, A., Fath, B., Quebe- Fehling, E., Ibarra de Palacios, P., Laurin, L. Giguere, M. (2002) “Evaluation of irritation and sensitisation of two 50 microg/day oestrogen patches”. Maturitas. 43, 257–263.

    Article  CAS  Google Scholar 

  25. 25. Murphy, M. Carmichael, A.J. (2000) “Transdermal drug delivery systems and skin sensitivity reactions, Incidence and management”. Am. J. Clin. Dermatol. 1, 361–368.

    Article  CAS  Google Scholar 

  26. 26. Williams, A.C. Barry, B.W. (2004). “Penetration enhancers”, Adv. Drug Deliv. Rev. 56, 603–618.

    Article  CAS  Google Scholar 

  27. 27. Pellet, M., Raghavan, S.L., Hadgraft, J. Davis, A.F. (2003) “The application of supersaturated systems to percutaneous drug delivery”. In: Guy, R.H. and Hadgraft, J., eds., Transdermal drug delivery. Marcel Dekker, Marcel Dekker, New York, pp. 305–326.

    Google Scholar 

  28. 28. Tsai, J.C., Guy, R.H., Thornfeldt, C.R., Gao, W.N., Feingold, K.R. Elias, P.M. (1996) “Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors”, J. Pharm. Sci. 85, 643–648.

    Article  CAS  Google Scholar 

  29. Elias, P.M., Feingold, K.R., Tsai, J., Thornfeldt, C. Menon, G. (2003) “Metabolic approach to transdermal drug delivery”. In: Guy, R.H. and Hadgraft, J., eds., Transdermal drug delivery. Marcel Dekker, pp. 285–304.

    Google Scholar 

  30. 30. Schreier, H. Bouwstra, J. (1994) “Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery”, J.Control. Release. 30, 1–15.

    Article  CAS  Google Scholar 

  31. 31. Cevc, G. (1996) “Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery”. Crit. Rev. Ther. Drug Carrier Syst. 13(3–4), 257–388.

    CAS  Google Scholar 

  32. 32. Cevc, G. (2003). “Transferosomes: innovative transdermal drug carriers”. In: Rathbone, M.J., Hadgraft, J. and Roberts, M.S., eds., Modified release drug delivery technology. Marcel Dekker, New York, pp. 533–560.

    Google Scholar 

  33. 33. Godin, B. Touitou, E. (2003) “Ethosomes: new prospects in transdermal delivery”, Crit. Rev. Ther. Drug. Carrier Syst. 20, 63–102.

    Article  CAS  Google Scholar 

  34. 34. Helmstädter, A. (2001) “The history of electrically assisted transdermal drug delivery (iontophoresis)”, Pharmazie. 56, 583–587.

    Google Scholar 

  35. 35. Banga, A.K., Bose, S. Ghosh, T.K. (1999) “Iontophoresis and electroporation: comparisons and contrasts”, Int. J. Pharm. 179, 1–19.

    Article  CAS  Google Scholar 

  36. 36. Weaver, J.C., Vaughan, T.E. Chizmadzhev, Y.A. (1999) “Theory of electrical creation of aqueous pathways across skin transport barriers”, Adv. Drug Deliv. Rev. 35, 21–39.

    Article  CAS  Google Scholar 

  37. 37. Denet, A.R., Vanbever, R. Préat, V. (2004) “Skin electroporation for topical and transdermal delivery”, Adv. Drug Deliv. Rev. 56, 659–674.

    Article  CAS  Google Scholar 

  38. 38. Pliquett, U., Vaughan, T. Weaver, J. (1999) “Apparatus and method for electroporation of tissue”. US Pat. 5,983,131.

    Google Scholar 

  39. 39. Zhang, L., Hofmann, G.A. Rabussay, D. (2001) “Electrically assisted transdermal method and apparatus for treatment of erectile dysfunction”, US Pat. 6,266,560.

    Google Scholar 

  40. Sugibayash, K., Kubo, H. Mori, K. (2002) “Device and electrode for electroporation”. Patent WO 01/28624.

    Google Scholar 

  41. 41. Wong, T.W., Chen, C.H., Huang, C.C., Lin, C.D. Hui, S.W. (2006) “Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery”. J. Control. Release. 110(3), 557–565.

    Article  CAS  Google Scholar 

  42. 42. Wang, Y., Allen, L.V., Li, C. Tu, Y. (1993) “Iontophoresis of hydrocortisone across hairless mouse skin: investigation of skin alteration”, J. Pharm. Sci. 82, 1140–1144.

    Article  CAS  Google Scholar 

  43. 43. Turner, N.G., Kalia, Y.N. Guy, R.H. (1997) “The effect of current on skin barrier function in vivo: recovery kinetics post iontophoresis”, Pharm. Res. 14, 1252–1255.

    Article  CAS  Google Scholar 

  44. 44. Banga, A.K. (1998). “Electrically assisted transdermal and topical drug delivery”. Taylor and Francis, London.

    Google Scholar 

  45. 45. Guy, R.H., Kalia, Y.N., Delgado-Charro, M.B., Merino, V., López, A. Marro, D. (2000) “Iontophoresis: electrorepulsion and electroosmosis”. J. Control. Release. 64, 129–132.

    Article  CAS  Google Scholar 

  46. 46. Subramony, J.A., Sharma, A. Phipps, J.B. (2006) “Microprocessor controlled transdermal drug delivery”. Int. J. Pharm. 317(1), 1–6.

    Article  CAS  Google Scholar 

  47. 47. Tyle, P. (1986) “Iontophoretic devices for drug delivery”. Pharm. Res. 3, 318–326.

    Article  CAS  Google Scholar 

  48. 48. Kalia, Y.N., Naik, A., Garrison, J. Guy, R.H. (2004) “Iontophoretic drug delivery”. Adv. Drug Del. Rev. 56, 619–658.

    Article  CAS  Google Scholar 

  49. 49. Priya, B., Rashmi, T. Bozena, M. (2006) “Transdermal iontophoresis”. Expert Opin. Drug Deliv. 3(1), 127–138.

    Article  CAS  Google Scholar 

  50. 50. Bommannan, D.B., Tamada, J., Leung, L. Potts, R.O. (1994) “Effects of electroporation on transdermal iontophoretic delivery of luteinizing-hormone-releasing hormone (LHRH) in vitro”. Pharm. Res. 11, 1809–1814.

    Article  CAS  Google Scholar 

  51. 51. Chang, S.L., Hofmann, G.A., Zhang, L., Deftos, L.J. Banga, A.K. (2000) “The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones”. J. Control. Release. 66, 127–133.

    Article  CAS  Google Scholar 

  52. 52. Badkar, A.V. Banga, A.K. (2002) “Electrically enhanced transdermal delivery of a macromolecule”. J. Pharm. Pharmacol. 54, 907–912.

    Article  CAS  Google Scholar 

  53. 53. Kanikkannan, N. (2002) “Iontophoresis based transdermal delivery systems”. Biodrugs. 16, 339–347.

    Article  CAS  Google Scholar 

  54. 54. Mitragotri, S., Blankschtein, D. Langer, R. (1996) “Transdermal delivery using low frequency sonophoresis”, Pharm. Res. 13, 411–420.

    Article  CAS  Google Scholar 

  55. 55. Mitragotri, S. (2004) “Low frequency sonophoresis”, Adv. Drug. Deliv. Rev. 56, 589–601.

    Article  CAS  Google Scholar 

  56. 56. Mitragotri, S., Blankschtein, D. Langer, R. (1995) “Ultrasound mediated transdermal protein delivery”, Science. 269, 850–853.

    Article  CAS  Google Scholar 

  57. 57. Liu, H., Li, S., Pan, W., Wang, Y., Han, F. Yao, H. (2006) “Investigation into the potential of low-frequency ultrasound facilitated topical delivery of Cyclosporin A”. Int. J. Pharm. 326(1–2), 32–8.

    Article  CAS  Google Scholar 

  58. Kost, J., Katz, N., Shapiro, D., Herrmann, T., Kellog, S., Warner, N. Custer, L. (2003) “Ultrasound skin permeation pre-treatment to accelerate the onset of topical anaesthesia”. Proc. Int. Symp. Bioact. Mater.

    Google Scholar 

  59. 59. Tachibana, K. (1992) “Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure”. Pharm. Res. 9, 952–954.

    Article  CAS  Google Scholar 

  60. 60. Boucaud, A., Garrigue, M.A., Machet, L., Vaillant, L. Patat, F. (2002) “Effect of sonication parameters on transdermal delivery of insulin to hairless rats”, J. Control. Release. 81, 113–119.

    Article  CAS  Google Scholar 

  61. 61. Smith, N.B., Lee, S., Maione, E., Roy, R., McElligott, S. Shung, K.K. (2003) “Ultrasound mediated transdermal transport of insulin in vitro through human skin using novel transducer designs”, Ultrasound. Med. Biol. 29, 311–317.

    Article  Google Scholar 

  62. 62. Jacques, S.L., McAuliffe, D.J., Blank, I.H. Parrish, J.A. (1988) “Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport”. US Pat 4, 775, 361.

    Google Scholar 

  63. 63. Lee, W.R., Shen, S.C., Lai, H.H., Hu, C.H. Fang, J.Y. (2001) “Transdermal drug delivery enhanced and controlled by erbium: YAG laser: a comparative study of lipophilic and hydrophilic drugs”. J. Control. Release. 75, 155–166.

    Article  CAS  Google Scholar 

  64. 64. Lee, W.R., Shen, S.C., Wang, K.H., Hu, C.H. Fang, J.Y. (2003) “Lasers and microdermabrasion enhance and control topical delivery of vitamin C”. J. Invest. Dermatol. 121, 1118–1125.

    Article  CAS  Google Scholar 

  65. 65. Baron, E.D., Harris, L., Redpath, W.S., Shapiro, H., Herzel, F., Morley, G., Bar, O.D. Stevens, S.R. (2003) “Laser assisted penetration of topical anaesthesia”. Arch. Dermatol. 139, 1288–1290.

    Article  Google Scholar 

  66. 66. Lee, S., McAuliffe, D.J., Flotte, T.J., Kollias, N. Doukas, A.G. (1998) “Photomechanical transcutaneous delivery of macromolecules”. J. Invest. Dermatol. 111, 925–929.

    Article  CAS  Google Scholar 

  67. 67. Lee, S., Kollias, N., McAuliffe, D.J., Flotte, T.J. Doukas, A.G. (1999) “Topical drug delivery in humans with a single photomechanical wave”. Pharm. Res. 16, 514–518.

    Article  Google Scholar 

  68. 68. Doukas, A.G., Kollias, N. (2004) “Transdermal delivery with a pressure wave”. Adv. Drug. Deliv. Rev. 56, 559–579.

    Article  CAS  Google Scholar 

  69. 69. Mulholland, S.E., Lee, S., McAuliffe, D.J. Doukas, A.G. (1999) “Cell loading with laser generated stress waves: the role of stress gradient”. Pharm. Res. 16, 514–518.

    Article  CAS  Google Scholar 

  70. 70. Lee, S., McAuliffe, D.J., Flotte, T.J., Kollias, N. Doukas, A.G. (2001) “Permeabilization and recovery of the stratum corneum in vivo: the synergy of photomechanical waves and sodium lauryl sulphate”. Lasers Surg. Med. 29, 145–150.

    Article  CAS  Google Scholar 

  71. 71. Lee, S., McAuliffe, D.J., Mulholland, S.E. Doukas, A.G. (2001) “Photomechanical transdermal delivery; the effect of laser confinement”. Lasers Surg. Med. 28, 344–347.

    Article  CAS  Google Scholar 

  72. 72. Sintov, A., Krymbeck, I., Daniel, D., Hannan, T., Sohn, Z. Levin, G. (2003) “Radiofrequency microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs”. J. Control. Release. 89, 311–320.

    Article  CAS  Google Scholar 

  73. 73. Murthy, S.N. (1999) “Magnetophoresis: an approach to enhance transdermal drug diffusion”. Pharmazie. 54, 377–379.

    CAS  Google Scholar 

  74. 74. Murthy, S.N. Hiremath, R.R. (2001) “Physical and chemical permeation enhancers in transdermal delivery of terbutaline sulphate”. AAPS PharmSciTech. 2, 1–5.

    Article  Google Scholar 

  75. 75. Blank, I.H., Scheuplein, R.J. Macfarlane, D.J. (1967) “Mechanism of percutaneous absorption: III. The effect of temperature on the transport of non-electrolytes across the skin”. J. Invest. Dermatol. 49, 582–589.

    Article  CAS  Google Scholar 

  76. 76. Clarys, P., Alewaeters, K., Jadoul, A., Barel, A., Mandas, O.R. Preat, V. (1998) “In vitro percutaneous penetration through hairless rat skin: influence of temperature, vehicle and penetration enhancers”. Eur. J. Pharm. Biopharm. 46, 279–283.

    Article  CAS  Google Scholar 

  77. 77. Akomeah, F., Nazir, T., Martin, G.P. Brown, M.B. (2004) “Effect of heat on the percutaneous absorption and skin retention of 3 model penetrants”. Eur. J. Pharm. Sci. 21, 337–345.

    Article  CAS  Google Scholar 

  78. 78. Ogiso, T., Hirota, T., Masahiro, I., Hino, T. Tadatoshi, T. (1998) “Effect of temperature on percutaneous absorption of terodiline and relationship between penetration and fluidity of stratum corneum lipids”. Int. J. Pharm. 176, 63–72.

    Article  CAS  Google Scholar 

  79. 79. Klemsdal, T.O., Gjesdal, K. Bredesen, J.E. (1992) “Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin”. Eur. J. Clin. Pharmacol. 43, 625–628.

    Article  CAS  Google Scholar 

  80. 80. Hull, W. (2002) “Heat enhanced transdermal drug delivery: a survey paper”. J. Appl. Res. Clin. Exp. Ther. 2, 1–9.

    Google Scholar 

  81. 81. Shomaker, T.S., Zhang, J. Ashburn, M.A. (2001) “A pilot study assessing the impact of heat on transdermal delivery of testosterone”. J. Clin. Pharmacol. 41, 677–682.

    Article  CAS  Google Scholar 

  82. 82. Ashburn, M.A., Ogden, L.L., Zhan, J., Love, G. Bastsa, S.V. (2003) “Pharmacokinetics of transdermal fentanyl delivered with and without controlled heat”. J. Pain. 4, 291–297.

    Article  CAS  Google Scholar 

  83. 83. Stanley, T., Hull, W. Rigby, L. (2001) “Transdermal drug patch with attached pocket for controlled heating device”. US Pat. 6,261,595.

    Google Scholar 

  84. 84. Shomaker, T.S., Zhang, J., Love. G., Basta, S. Ashburn, M.A. (2000) “Evaluating skin anaesthesia after administration of a local anaesthetic system consisting of an S-Caine™ patch and a controlled heat-aided drug delivery (CHADD™) patch in volunteers”. Clin. J. Pain. 16, 200–204.

    Article  CAS  Google Scholar 

  85. Kuleza, J. Dvoretzky, I. (2001) “Multipurpose drug and heat therapy system”. Patent WO 01/58408.

    Google Scholar 

  86. 86. Paranjape, M., Garra, J., Brida, S., Schneioder, T., White, R. Currie, J. (2003) “A PDMS dermal patch for non-intrusive transdermal glucose sensing”. Sens Actuators A. 104, 195–204.

    Article  CAS  Google Scholar 

  87. 87. Kasting, G.B. Bowman, L.A. (1990) “Electrical analysis of fresh excised human skin: A comparison with frozen skin”. Pharm. Res. 7, 1141–1146.

    Article  CAS  Google Scholar 

  88. 88. Yazdanian, M. (1994) “Effect of freezing on cattle skin permeability”. Int. J. Pharm. 103, 93–96.

    Article  CAS  Google Scholar 

  89. 89. Babu, R.J., Kanikkannan, N., Kikwai, L., Ortega, C., Andega, S., Ball, K., Yim, S. Singh, M. (2003) “The influence of various methods of cold storage on the permeation of melatonin and nimesulide”. J. Control. Release. 86, 49–57.

    Article  CAS  Google Scholar 

  90. 90. Gerstel, M.S. Place, V.A. (1976) “Drug delivery device”. US Pat. 3,964,482.

    Google Scholar 

  91. 91. Trautman, J., Cormier, M.J., Kim, H.L. Zuck, M.G. (2000) “Device for enhancing transdermal agent flux”. US Pat. 6,083,196.

    Google Scholar 

  92. 92. Trautman, J., Wong, P.S., Daddona, P.E., Kim, H.L. Zuck, M.G. (2001) “Device for enhancing transdermal agent flux”. US Pat. 6,322,808 B1.

    Google Scholar 

  93. 93. Yuzhakov, V.V., Sherman, F.F., Owens, G.D. Gartstein, V. (2001) “Apparatus and method for using an intracutaneous microneedle array”. US Pat. 6,256,533.

    Google Scholar 

  94. 94. Lin, W.Q., Cormier, M., Samiee, A., Griffin, A., Johnson, B., Teng, C.L., Hardee, G.E. Daddona, P. (2001) “Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux®) Technology”. Pharm. Res. 18, 1789–1793.

    Article  CAS  Google Scholar 

  95. 95. Matriano, J.A., Cormier, M., Johnson, J., Young, W.A., Buttery, M., Nyam, K. Daddona, P. (2002) “Macroflux Technology: a new and efficient approach for intracutaneous immunization”. Pharm. Res. 19; 63–70.

    Article  Google Scholar 

  96. 96. Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G. Prausnitz, M.R. (2001) “Lack of pain associated with microfabricated microneedles”. Anesth. Analg. 92, 502–504.

    Article  CAS  Google Scholar 

  97. 97. Prausnitz, M.R. (2004) “Microneedles for transdermal drug delivery”. Adv. Drug Deliv. Rev. 56, 581–587.

    Article  CAS  Google Scholar 

  98. 98. Martanto, W., Davis, S.P., Holiday, N.R., Wang, J., Gill, H.S., Prausnitz, M.R. (2004) “Transdermal delivery of insulin using microneedles in vivo”. Pharm. Res. 21, 947–952.

    Article  CAS  Google Scholar 

  99. 99. Giudice, E.L. Campbell, J.D. (2006) “Needle-free vaccine delivery”. Adv. Drug Deliv. Rev. 58(1), 68–89.

    Article  CAS  Google Scholar 

  100. 100. Allen, M.G., Prausnitz, M.R., McAllister, D.V. Cross, F.P.M. (2002) “Microneedle devices and methods of manufacture and use thereof”. US Pat. 6,334,856.

    Google Scholar 

  101. 101. Godshall, N. Anderson, R. (1999) “Method and apparatus for disruption of the epidermis”. US Pat. 5,879,326.

    Google Scholar 

  102. Godshall, N. (1996) “Micromechanical patch for enhancing delivery of compounds through the skin”. Patent WO 9637256.

    Google Scholar 

  103. Kamen, D. (1998) “System for delivery of drugs by transport”. Patent WO 98/11937.

    Google Scholar 

  104. 104. Jang, K. (1998) “Skin perforating apparatus for transdermal medication”. US Pat. 5,843,114.

    Google Scholar 

  105. Lin, W.Q., Theeuwes, F. Cormier, M. (2001) “Device for enhancing transdermal flux of sampled agents”. Patent WO 01/43643.

    Google Scholar 

  106. 106. Muddle, A.G., Longridge, D.J., Sweeney, P.A., Burkoth, T.L. Bellhouse, B.J. (1997) “Transdermal delivery of testosterone to conscious rabbits using powderject (R): a supersonic powder delivery system”. Proc. Int. Symp. Control. Release. Bioact. Mat. 24, 713.

    Google Scholar 

  107. 107. Longbridge, D.J., Sweeney, P.A., Burkoth, T.L. Bellhouse, B.J. (1998) “Effects of particle size and cylinder pressure on dermal powderject® delivery of testosterone to conscious rabbits”. Proc. Int. Symp. Control. Rel Bioact. Mat. 25, 964.

    Google Scholar 

  108. 108. Burkoth, T.L., Bellhouse, B.J., Hewson, G., Longridge, D.J., Muddle, A.J. Sarphie, D.J. (1999) “Transdermal and transmucosal powdered delivery”. Crit. Rev. Ther. Drug Carrier Syst. 16, 331–384.

    CAS  Google Scholar 

  109. 109. Bernabei, G.F., “Method and apparatus for skin absorption enhancement and transdermal drug delivery”. US Pat. 7,083,580.

    Google Scholar 

  110. 110. Svedman, P. (1995) “Transdermal perfusion of fluids”. US Pat. 5,441,490.

    Google Scholar 

  111. 111. Svedman, P., Lundin, S., Höglund, P., Hammarlund, C., Malmros, C. Panzar, N. (1996) “Passive drug diffusion via standardized skin mini-erosion; methodological aspects and clinical findings with new device”. Pharm. Res. 13, 1354–1359.

    Article  CAS  Google Scholar 

  112. 112. Svedman, P. Svedman, C. (1998) “Skin mini-erosion sampling technique: feasibility study with regard to serial glucose measurement”. Pharm. Res. 15, 883–888.

    Article  CAS  Google Scholar 

  113. 113. Down, J. Harvey, N.G. (2003) “Minimally invasive systems for transdermal drug delivery”. In: Guy, R.H. and Hadgraft, J., eds., Transdermal drug delivery. Marcel Dekker, New York, pp. 327–360.

    Google Scholar 

  114. 114. Treffel, P., Panisset, F., Humbert, P., Remoussenard, O., Bechtel, Y. Agache, P. (1993) “Effect of pressure on in vitro percutaneous absorption of caffeine”. Acta. Derm. Venereol (Stockh). 73, 200–202.

    CAS  Google Scholar 

  115. Cormier, M., Trautman, J., Kim, H.L., Samiee, A.P., Ermans, A.P., Edwards, B.P., Lim, W.L. Poutiatine, A. (2001) “Skin treatment apparatus for sustained transdermal drug delivery”. Patent WO 01/41864 A1.

    Google Scholar 

  116. Neukermans, A.P., Poutiatine, A.I., Sendelbeck, S., Trautman, J., Wai, L.L., Edwards, B.P., Eng, K.P., Gyory, J.R., Hyunok, K.L., Lin, W.Q. Cormier M (2001) “Device and method for enhancing microprotrusion skin piercing”. Patent WO 0141863.

    Google Scholar 

  117. Mikszta, J.A., Britingham, J.M., Alarcon, J., Pettis, R.J. Dekker, J.P. (2001) “Applicator having abraded surface coated with substance to be applied”. Patent WO 01/89622 A1.

    Google Scholar 

  118. 118. Mikszta, J.A., Britingham, J.M., Alarcon, J., Pettis, R.J. Dekker, J.P. (2003) “Topical delivery of vaccines”. US Pat. 6,595,947 B1.

    Google Scholar 

  119. 119. Lee, W.R., Tsai, R.Y., Fang, C.L., Liu, C.J., Hu, C.H. Fang, J.Y. (2006) “Microdermabrasion as a novel tool to enhance drug delivery via the skin: an animal study”. Dermatol. Surg. 32(8), 1013–1022.

    Article  CAS  Google Scholar 

  120. 120. Barry, B.W. (2001) “Novel mechanisms and devices to enable successful transdermal drug delivery”. Eur. J. Pharm. Sci. 14, 101–114.

    Article  CAS  Google Scholar 

  121. Sage, B.H. Bock, C.R. (2003) “Method and device for abrading skin”. US Pat. 2003/199811.

    Google Scholar 

  122. Sage, B.H. Bock, C.R. (2003) “Device for abrading skin”. Patent EP 1,086,719 A1.

    Google Scholar 

  123. 123. Seth, A.K., Misrad, A., Umrigar, D. Vora, N. (2003) “Role of acyclovir gel in herpes simplex: clinical implications”. Med. Sci. Monit. 9, PI93–P198.

    CAS  Google Scholar 

  124. 124. Parry, G.E., Dunn, P., Shah, V.P. Pershing, L.K. (1992) “Acyclovir bioavailability in human skin”. J. Invest. Dermatol. 98, 856–863.

    Article  CAS  Google Scholar 

  125. 125. Stagni, G., Ali, M.E. Weng, D. (2004) “Pharmacokinetics of acyclovir in rabbit skin after i.v.-bolus, ointment and iontophoretic administrations”. Int. J. Pharm. 274, 201–211.

    Article  CAS  Google Scholar 

  126. 126. Volpato, N., Santi, P. Colombo, P. (1995) “Iontophoresis enhances the transport of acyclovir through nude mouse skin by electrorepulsion and electroosmosis”. Pharm. Res. 12, 1623–1627.

    Article  CAS  Google Scholar 

  127. 127. Volpato, N.M., Nicoli, S., Laureri, C., Colombo, P. Santi, P. (1998) “In vitro acyclovir distribution in human skin layers after transdermal iontophoresis”. J. Control. Rel. 50, 291–296.

    Article  CAS  Google Scholar 

  128. 128. Goldberg, D. (2005) “Iontophoretic based drug delivery”. Innov. Pharm. Technol. 16, 68–72.

    Google Scholar 

  129. Brown, M.B. Martin, G.P. (2005) “Dermal drug delivery system”. World Patent No. WO 2005058226.

    Google Scholar 

  130. 130. Santi, P., Nicoli, S., Colombo, G., Bettini, R., Artusi, M., Rimondi, S. et al. (2003) “Post iontophoresis transport of ibuprofen lysine across rabbit ear skin”. Int. J. Pharm. 266, 69–75.

    Article  CAS  Google Scholar 

  131. 131. Grosh, S. (2000) “Transdermal drug delivery – opening doors for the future”. Euro. Pharm. Contractor (Nov.). 4, 30–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Brown, M.B., Traynor, M.J., Martin, G.P., Akomeah, F.K. (2008). Transdermal Drug Delivery Systems: Skin Perturbation Devices. In: Jain, K.K. (eds) Drug Delivery Systems. Methods in Molecular Biology™, vol 437. Humana Press. https://doi.org/10.1007/978-1-59745-210-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-210-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-891-1

  • Online ISBN: 978-1-59745-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics