Skip to main content

Sedimentation Velocity Ultracentrifugation Analysis for Hydrodynamic Characterization of G-Quadruplex Structures

  • Protocol
  • First Online:
G-Quadruplex DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 608))

Abstract

Analytical ultracentrifugation (AUC) is a powerful technique for the characterization of hydrodynamic and thermodynamic properties. The intent of this article is to demonstrate the utility of sedimentation velocity (SV) studies to obtain hydrodynamic information for G-quadruplex (GQ) systems and to provide insights into one part of this process, namely, data analysis of existing SV data. An array of data analysis software is available, mostly written and continually developed by established researchers in the AUC field, with particularly rapid advances in the analysis of SV data. Each program has its own learning curve, and this article is intended as a resource in the data analysis process for beginning researchers in the field. We discuss the application of three of the most commonly used data analysis programs, DCDT+, Sedfit, and SedAnal, to the interpretation of SV data obtained in our laboratory on two GQ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUC:

Analytical ultracentrifugation

CD:

Circular dichroism

D:

Translational diffusion coefficient

SV:

Sedimentation velocity

SE:

Sedimentation equilibrium

s:

Sedimentation coefficient

s20,w :

Sedimentation coefficient corrected to a temperature of 20°C and to the density and viscosity of pure water

S:

Svedberg unit equal to 10−13 s

M:

Molecular weight

\( \bar v \) :

Partial specific volume

\( \rho \) :

Density

GQ:

G-quadruplex

References

  1. Hansen JC, Kreider JI, Demeler B, Fletcher TM (1997) Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution. Methods 12:62–72

    Article  CAS  PubMed  Google Scholar 

  2. Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–79

    Article  CAS  PubMed  Google Scholar 

  3. Hansen JC, Lebowitz J, Demeler B (1994) Analytical ultracentrifugation of complex macromolecular systems. Biochemistry 33: 13155–63

    Article  CAS  PubMed  Google Scholar 

  4. Laue T (2001) Biophysical studies by ultracentrifugation. Curr Opin Struc Biol 11:579–83

    Article  CAS  Google Scholar 

  5. Howlett GJ, Minton AP, Rivas G (2006) Analytical ultracentrifugation for the study of protein association and assembly. Curr Opin Chem Biol 10:430–36

    Article  CAS  PubMed  Google Scholar 

  6. Cole JL, Hansen JC (1999) Analytical ultracentrifugation as a contemporary biomolecular research tool. J Biomol Tech 10:163–76

    CAS  PubMed  Google Scholar 

  7. Ralston G (1993) Introduction to analytical ultracentrifugation. Beckman Instruments, Inc., Fullerton, CA

    Google Scholar 

  8. Laue TM, Stafford WF III (1999) Modern applications of analytical ultracentrifugation. Annu Rev Biophys Biomol Struct 28:75–100

    Article  CAS  PubMed  Google Scholar 

  9. Stafford WF, Sherwood PJ (2004) Analysis of heterologous interacting systems by ­sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants. Biophys Chem 108:231–43

    Article  CAS  PubMed  Google Scholar 

  10. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 82:1096–111

    Article  CAS  PubMed  Google Scholar 

  11. Brown PH, Balbo A, Schuck P (2008) Characterizing protein–protein interactions by sedimentation velocity analytical ultracentifrugation. Curr Protoc Immunol 81; 18.15.1–18.15.39

    Google Scholar 

  12. Balbo A, Schuck P (2005) Analytical ultracentrifugation in the study of protein self-association and heterogeneous protein–protein interactions. In: Golemis EA, Adams PD (eds) Protein-Protein Interactions: A Molecular Cloning Manual. Cold Spring Harbor Laboratory, Woodbury, NY, pp 253–77

    Google Scholar 

  13. Balbo A, Brown PH, Schuck P (2008) Experimental protocol for sedimentation velocity analytical ultracentrifugation. Available from http://www.analyticalultracentrifugation.com/svprotocols.htm

  14. Demeler B, Saber H, Hansen JC (1997) Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys J 72:397–407

    Article  CAS  PubMed  Google Scholar 

  15. van Holde KE, Weischet WO (1978) Boundary analysis of sedimentation-velocity experiments with monodisperse and paucidisperse solutes. Biopolymers 17:1387–403

    Article  Google Scholar 

  16. Carruthers LM, Schirf VR, Demeler B, Hansen JC (2000) Sedimentation velocity analysis of macromolecular assemblies. Methods Enzymol 321:66–80

    Article  CAS  PubMed  Google Scholar 

  17. Stafford WF (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203:295–301

    Article  CAS  PubMed  Google Scholar 

  18. Stafford WF (2000) Analysis of reversibly interacting macromolecular systems by time derivative sedimentation velocity. Methods Enzymol 323:302–25

    Article  CAS  PubMed  Google Scholar 

  19. Philo JS (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal Biochem 279:151–63

    Article  CAS  PubMed  Google Scholar 

  20. Philo JS (1997) An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J 72:435–44

    Article  CAS  PubMed  Google Scholar 

  21. Schuck P, MacPhee CE, Howlett GJ (1998) Determination of sedimentation coefficients for small peptides. Biophys J 74:466–74

    Article  CAS  PubMed  Google Scholar 

  22. Schuck P, Millar DB (1998) Rapid determination of molar mass in modified archibald experiments using direct fitting of the Lamm equation. Anal Biochem 259:48–53

    Article  CAS  PubMed  Google Scholar 

  23. Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys. J. 75:1503–12

    Article  CAS  PubMed  Google Scholar 

  24. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–19

    Article  CAS  PubMed  Google Scholar 

  25. Schuck P, Rossmanith P (2000) Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers 54:328–41

    Article  CAS  PubMed  Google Scholar 

  26. Schuck P (1999) Sedimentation equilibrium analysis of interference optical data by systematic noise decomposition. Anal Biochem 272:199–208

    Article  CAS  PubMed  Google Scholar 

  27. Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, U.K, pp 90–125

    Google Scholar 

  28. Schuck P, Demeler B (1999) Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys J 76:2288–96

    Article  CAS  PubMed  Google Scholar 

  29. Philo J (2006) Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques. Anal Biochem 354:238–46

    Article  CAS  PubMed  Google Scholar 

  30. Cole JL, Lary JW, Moody TP, Laue TM (2008) Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. In: Correia JJ, Detrich HW (eds) Methods in cell biology, Vol. 84, biophysical tools for biologists: volume 1, in vitro techniques. Academic, San Diego, CA, pp 143–79

    Chapter  Google Scholar 

  31. Schuck P (2008) SEDFIT (version 11.3b). National Institutes of Health, Bethesda, MD. Available from http://www.analyticalultracentrifugation.com/download.htm.

  32. Schuck P (2008) SEDPHAT (version 5.14). National Institutes of Health, Bethesda, MD. Available from http://www.analyticalultracentrifugation.com/sedphat/download.htm.

  33. Sherwood P, Stafford W (2008) SedAnal, sedimentation analysis software (version 5.03). Boston Biomedical Research Institute, Watertown, MA. Available from http://sedanal.bbri.org/.

  34. Philo JS (2007) DCDT+ (version 2.1.0.28333). John S Philo, Thousand Oaks, CA. Available from http://www.jphilo.mailway.com/dcdt+.htm.

  35. Cole JL, Lary JW (2006) HeteroAnalysis (version 1.1.33). Analytical ultracentrifugation facility, Biotechnology Bioservices Center, University of Connecticut, Storrs, CT. Available from http://www.biotech.uconn.edu/auf/?i=aufftp.

  36. Philo JS (2001) SVEDBERG (version 6.39). John S Philo, Thousand Oaks, CA. Available from http://www.jphilo.mailway.com/svedberg.htm.

  37. Demeler B (2008) UltraScan (version 9.9 (Revision 714)). Borries Demeler and The University of Texas Health Science Center at San Antonio, San Antonio, TX. Available from http://www.ultrascan.uthscsa.edu/.

  38. Philo JS (2003) XLGraph (version 3.21). John S Philo, Thousand Oaks, CA. Available from http://www.jphilo.mailway.com/download.htm.

  39. Yphantis D, Lary JW (1999) WinMatch V0.99 for Win95 + WinNT. Program For Intercomparison of Ultracentrifuge Data Files (version 0.99.0039). David A. Yphantis and Jeffrey W Lary, Mansfield Center, CT. Available from http://www.biotech.uconn.edu/auf/?i=aufftp.

  40. Hayes DB, Laue T, Philo J (2006) Sedimentation Interpretation Program (version 1.09). University of New Hampshire, Durham, NH. Available from http://www.jphilo.mailway.com/download.htm.

  41. Philo, JS DCDT+ Home Page John S Philo, Thousand Oaks, CA. Available from http://www.jphilo.mailway.com/dcdt+.htm.

  42. Shafer RH, Smirnov I (2001) Biological Aspects of DNA/RNA Quadruplexes. Biopolymers 56:209–27

    Article  CAS  Google Scholar 

  43. Scaria PV, Shire SJ, Shafer RH (1992) Quadruplex structure of d(G3T4G3) stabilized by K+ or Na+ is an asymmetric hairpin dimer. Proc Natl Acad Sci USA 89:10336–40

    Article  CAS  PubMed  Google Scholar 

  44. Mekmaysy C (2007) The structure and stability of G-quadruplexes. Masters Thesis, University of Louisville, Louisville, KY, 109 p.

    Google Scholar 

  45. Correia JJ, Stafford WF (2009) Extracting equilibrium constants from kinetically limited reacting systems. Methods Enzymol 455, in press.

    Google Scholar 

  46. Correia JJ (2000) Analysis of weight average sedimentation velocity data. Methods Enzymol 321:81–100

    Article  CAS  PubMed  Google Scholar 

  47. Kegeles G, Cann J (1978) Kinetically controlled mass transport of associating-dissociating macromolecules. Methods Enzymol 48:248–70

    Article  CAS  PubMed  Google Scholar 

  48. Gelinas AD, Toth J, Bethoney KA, Stafford WF, Harrison CJ (2004) Mutational analysis of the energetics of the GrpE.DnaK binding interface: equilibrium association constants by sedimentation velocity analytical ultracentrifugation. J Mol Biol 339:447–58

    Article  CAS  PubMed  Google Scholar 

  49. Stafford WF (2009) Protein-protein and ligand-protein interactions studied by analytical ultracentrifugation. In: Schriver JW (ed) Methods in molecular biology, Vol. 490, Protein structure, stability, and interactions. Humana, Totowa, NJ, pp 83–113

    Google Scholar 

  50. Kegeles G (1978) Pressure-jump light-scattering observations of macromolecular interaction kinetics. Methods Enzymol 48:308–20

    Article  CAS  PubMed  Google Scholar 

  51. Cox DJ (1978) Calculation of simulated sedimentation velocity profiles for self-associating solutes. Methods Enzymol 48:212–42

    Article  CAS  Google Scholar 

  52. Cann JR (1978) Measurement of protein interactions mediated by small molecules using sedimentation velocity. Methods Enzymol 48:242–48

    Article  CAS  PubMed  Google Scholar 

  53. Cann JR (1978) Ligand binding by associating systems. Methods Enzymol 48:299–307

    Article  CAS  PubMed  Google Scholar 

  54. Cann JR, Kegeles G (1974) Theory of sedimentation for kinetically controlled dimerization reactions. Biochemistry 13:1868–74

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Correia JJ, Wang L, Trent JO, Chaires JB (2005) Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res 33:4649–59

    Article  CAS  PubMed  Google Scholar 

  56. García de la Torre J (2001) Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins. Biophys Chem 93:159–70

    Article  PubMed  Google Scholar 

  57. García de la Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–30

    Article  PubMed  Google Scholar 

  58. Fernandes MX, Ortega A, López Martínez MC, García de la Torre J (2002) Calculation of hydrodynamic properties of small nucleic acids from their atomic structure. Nucleic Acids Res 30:1782–88

    Article  CAS  PubMed  Google Scholar 

  59. Byron O (2000) Hydrodynamic bead modeling of biological macromolecules. Methods Enzymol 321:278–304

    Article  CAS  PubMed  Google Scholar 

  60. Bloomfield VA, Crothers DM, Tinoco I Jr (2000) Nucleic Acids: Structures. Properties and Functions. University Science Books, Sausalito, CA, p 359

    Google Scholar 

  61. Hellman LM, Rodgers DW, Fried MG (2009) Phenomenological partial specific volumes for G-Quadruplex DNAs. Eur. Biophys. J, in press.

    Google Scholar 

  62. Stafford WF, Schuster TM (1995) Hydrodynamic Methods. In: Glasel JA, Deutscher MP (eds) Introduction to biophysical methods for protein and nucleic acid research. Academic, San Diego, CA, pp 111–45

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Jack Correia for countless helpful discussions. This work was supported by National Cancer Institute grant CA35635 to J.B.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Chaires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Garbett, N.C., Mekmaysy, C.S., Chaires, J.B. (2010). Sedimentation Velocity Ultracentrifugation Analysis for Hydrodynamic Characterization of G-Quadruplex Structures. In: Baumann, P. (eds) G-Quadruplex DNA. Methods in Molecular Biology, vol 608. Humana Press. https://doi.org/10.1007/978-1-59745-363-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-363-9_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-950-5

  • Online ISBN: 978-1-59745-363-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics