Skip to main content

Analysis of Tubulin Transport in Nerve Processes

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 137))

Abstract

In neurons, the molecular machinery for axonal growth and navigation is localized to the growth cone region, whereas tubulin is synthesized primarily in the cell body. Because diffusion serves as an efficient transport mechanism only for very short distances, tubulin has to be actively transported from the cell body down the axon. Two mechanistically distinct models for tubulin transport have been proposed. “Polymer model” postulates that tubulin moves in the form of microtubules preassembled in the cell body, whereas “subunit model” assumes that axonal microtubules are stationary, and that tubulin is delivered from the cell body in unassembled form. We used three independent quantitative approaches (photobleaching, fluorescence speckle microscopy, and microtubule plus end tracking) to demonstrate that axonal microtubules are stationary in rapidly growing axons produced by Xenopus spinal cord neurons in culture. These experiments strongly support subunit model for tubulin delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein, L. S. and Yang, Z. (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71.

    Article  CAS  PubMed  Google Scholar 

  2. Hirokawa, N. and Takemura, R. (2004) Molecular motors in neuronal development, intracellular transport and diseases. Curr. Opin. Neurobiol. 14, 564–573.

    Article  CAS  PubMed  Google Scholar 

  3. Terada, S., Kinjo, M., and Hirokawa, N. (2000) Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103, 141–155.

    Article  CAS  PubMed  Google Scholar 

  4. Galbraith, J. A., Reese, T. S., Schlief, M. L., and Gallant, P. E. (1999) Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc. Natl. Acad. Sci. USA 96, 11,589–11,594.

    Article  CAS  PubMed  Google Scholar 

  5. Baas, P. W. (1999) Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman, P. N. and Lasek, R. J. (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66, 351–366.

    Article  CAS  PubMed  Google Scholar 

  7. Sabry, J., O’Connor, T. P., and Kirschner, M. W. (1995) Axonal transport of tubulin in Ti1 pioneer neurons in situ. Neuron 14, 1247–1256.

    Article  CAS  PubMed  Google Scholar 

  8. Peloquin, J., Komarova, Y., and Borisy, G. (2005) Conjugation of fluorophores to tubulin. Nat. Methods 2, 299–303.

    Article  CAS  PubMed  Google Scholar 

  9. Komarova, Y. A., Vorobjev, I. A., and Borisy, G. G. (2002) Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. 115, 3527–3539.

    CAS  PubMed  Google Scholar 

  10. Chang, S., Rodionov, V. I., Borisy, G. G., and Popov, S. V. (1998) Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth. J. Neurosci. 18, 821–829.

    CAS  PubMed  Google Scholar 

  11. Chang, S., Svitkina, T. M., Borisy, G. G., and Popov, S. V. (1999) Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nat. Cell Biol. 1, 399–403.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, Y., Shakiryanova, D., Vardya, I., and Popov, S. V. (2004) Quantitative analysis of microtubule transport in growing nerve processes. Curr. Biol. 14, 725–730.

    Article  CAS  PubMed  Google Scholar 

  13. Okabe, S. and Hirokawa, N. (1992) Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. J. Cell Biol. 117, 105–120.

    Article  CAS  PubMed  Google Scholar 

  14. Okabe, S. and Hirokawa, N. (1990) Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343, 479–482.

    Article  CAS  PubMed  Google Scholar 

  15. Waterman-Storer, C. M., Desai, A., Bulinski, J. C., and Salmon, E. D. (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230.

    Article  CAS  PubMed  Google Scholar 

  16. Akhmanova, A. and Hoogenraad, C. C. (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54.

    Article  CAS  PubMed  Google Scholar 

  17. Perez, F., Diamantopoulos, G. S., Stalder, R., and Kreis, T. E. (1999) CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527.

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, E. M. and Kirschner, M. W. (1991) Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115, 345–363.

    Article  CAS  PubMed  Google Scholar 

  19. Okabe, S. and Hirokawa, N. (1993) Do photobleached fluorescent microtubules move? Re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon. J. Cell Biol. 120, 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  20. Craig, A. M., Wyborski, R. J., and Banker, G. (1995) Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature 375, 592–594.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, L. and Brown, A. (2002) Rapid movement of microtubules in axons. Curr. Biol. 12, 1496–1501.

    Article  CAS  PubMed  Google Scholar 

  22. Danuser, G. and Waterman-Storer, C. M. (2003) Quantitative fluorescent speckle microscopy: where it came from and where it is going. J. Microsc. 211, 191–207.

    Article  CAS  PubMed  Google Scholar 

  23. Alder, J., Kanki, H., Valtorta, F., Greengard, P., and Poo, M. M. (1995) Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses. J. Neurosci. 15, 511–519.

    CAS  PubMed  Google Scholar 

  24. Morrison, E. E., Moncur, P. M., and Askham, J. M. (2002) EB1 identifies sites of microtubule polymerisation during neurite development. Brain Res. Mol. Brain Res. 98, 145–152.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Tsvetkov, A., Popov, S. (2007). Analysis of Tubulin Transport in Nerve Processes. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics