Skip to main content

Approaches to Kinesin-1 Phosphorylation

  • Protocol
Molecular Motors

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 392))

Abstract

Most mammalian proteins undergo reversible protein modification after or during synthesis. These modifications are associated, for the most part, with changes in protein functionality. Protein phosphorylation is the most common posttranslational modification in mammalian cells, regulating critical cellular processes that include cell division, differentiation, growth, and cell-cell signaling as well as fast axonal transport (FAT). Evidence has accumulated that kinesin-1 phosphorylation plays a key regulatory role in kinesin-based FAT. Multiple kinase and phosphatase activities with the ability to regulate kinesin-1 function and FAT have been identified. Moreover, additional pathways are likely to exist for regulating FAT through reversible phosphorylation/dephosphorylation of specific motor protein subunits. The present chapter describes specific biochemical assays to determine, or to perturb experimentally, the phosphorylation status of kinesin-1. These protocols provide assays for characterization of novel effectors (i.e., trophic factors, neurotransmitters, pharmacological inhibitors, pathogenic protein expression, etc.) that affect the phosphorylation status of kinesin-1. Finally, in vitro phosphorylation assays suitable for analyzing the direct effects of specific kinases on kinesin-1 are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brady, S.T. (1993) Axonal dynamics and regeneration. In: Neuroregeneration (Gorio, A., ed.), pp. 7–36. Raven Press, New York.

    Google Scholar 

  2. Morfini, G., Pigino, G., Beffert, U., Busciglio, J., and Brady, S.T. (2002) Fast axonal transport misregulation and Alzheimer’s disease. Neuromol. Med. 2(2), 89–99.

    Article  CAS  Google Scholar 

  3. Morfini, G., Pigino, G., and Brady, S.T. (2005) Polyglutamine expansion diseases: failing to deliver. Trends Mol. Med. 11, 64–70.

    Article  CAS  PubMed  Google Scholar 

  4. Brady, S.T. and Sperry, A.O. (1995) Biochemical and functional diversity of microtubule motors in the nervous system. Curr. Opin. Neurobiol. 5, 551–558.

    Article  CAS  PubMed  Google Scholar 

  5. Vale, R.D. (2003) The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480.

    Article  CAS  PubMed  Google Scholar 

  6. Cyr, J.L., Pfister, K.K., Bloom, G. S., Slaughter, C.A., and Brady, S.T. (1991) Molecular genetics of kinesin light chains: generation of isoforms by alternative splicing. Proc. Natl. Acad. Sci. USA 88, 10114–10118.

    Article  CAS  PubMed  Google Scholar 

  7. Hirokawa, N., Pfister, K.K., Yorifuji, H., Wagner, M.C., Brady, S.T., and Bloom, G.S. (1989) Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56, 867–878.

    Article  CAS  PubMed  Google Scholar 

  8. Stenoien, D.S. and Brady, S.T. (1997) Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675–689.

    CAS  PubMed  Google Scholar 

  9. Morfini, G., Szebenyi, G., Richards, B., and Brady, S.T. (2001) Regulation of kinesin: implications for neuronal development. Dev. Neurosci. 23, 364–376.

    Article  CAS  PubMed  Google Scholar 

  10. Morfini, G., Pigino, G., Szebenyi, G., Zou, Y., Pollema, S., and Brady, S.T. (2006) JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat. Neurosci. 9(7), 907–916.

    Article  CAS  PubMed  Google Scholar 

  11. Morfini, G., Szebenyi, G., Brown, H., Pant, H.C., Pigino, G., DeBoer, S., Beffert, U., and Brady, S.T. (2004) A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 23, 2235–2245.

    Article  CAS  PubMed  Google Scholar 

  12. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N., and Brady, S.T. (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 23, 281–293.

    Article  Google Scholar 

  13. Donelan, M.J., Morfini, G., Julyan, R., Sommers, S., Hays, L., Kajio, H., Briaud, I., Easom, R.A., Molkentin, J.D., Brady, S.T., and Rhodes, C.J. (2002) Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis. J. Biol. Chem. 277(27), 24232–24242.

    Article  CAS  PubMed  Google Scholar 

  14. Hollenbeck, P.J. (1993) Phosphorylation of neuronal kinesin heavy and light chains in vivo. J. Neurochem. 60, 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  15. Ratner, N., Bloom, G.S., and Brady, S.T. (1998) A role for Cdk5 kinase in fast anterograde axonal transport: novel effects of olomoucine and the APC tumor suppressor protein. J. Neurosci. 18, 7717–7726.

    CAS  PubMed  Google Scholar 

  16. Pigino, G., Morfini, G., Mattson, M.P., Brady, S.T., and Busciglio, J. (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci. 23, 4499–4508.

    CAS  PubMed  Google Scholar 

  17. Szebenyi, G., Morfini, G.A., Babcock, A., Gould, M., Selkoe, K., Stenoien, D.L., Young, M., Faber, P.W., MacDonald, M.E., McPhaul, M.J., and Brady, S.T. (2003) Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41–52.

    Article  CAS  PubMed  Google Scholar 

  18. Elluru, R.G., Bloom, G.S., and Brady, S.T. (1990) Axonal transport of kinesin in the rat optic nerve/tract. J. Cell Biol. 111, 417a.

    Google Scholar 

  19. Pfister, K.K., Wagner, M.C., Stenoien, D., Bloom, G.S., and Brady, S.T. (1989) Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J. Cell Biol. 108, 1453–1463.

    Article  CAS  PubMed  Google Scholar 

  20. Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Cena, V., Gallego, C., and Comella, J.X. (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factordependent, human neuron-like cells. J. Neurochem. 75(3), 991–1003.

    Article  CAS  PubMed  Google Scholar 

  21. Simeoni, S., Mancini, M.A., Stenoien, D.L., Marcelli, M., Weigel, N.L., Zanisi, M., Martini, L., and Poletti, A. Motoneuronal cell death is not correlated with aggregate formation of androgen receptors containing an elongated polyglutamine tract. Hum. Mol. Genet. 9(1), 133–144.

    Google Scholar 

  22. Trettel, F., Rigamonti, D., Hilditch-Maguire, P., Wheeler, V.C., Sharp, A.H., Persichetti, F., Cattaneo, E., and MacDonald, M.E. (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 9(19), 2799–2809.

    Article  CAS  PubMed  Google Scholar 

  23. Anantharam, V., Kitazawa, M., Latchoumycandane, C., Kanthasamy, A., and Kanthasamy, A.G. (2004) Blockade of PKC delta proteolytic activation by loss of function mutants rescues mesencephalic dopaminergic neurons from methyl-cyclopentadienyl manganese tricarbonyl (MMT)-induced apoptotic cell death. Ann. N.Y. Acad. Sci. 1035, 271–289.

    Article  CAS  PubMed  Google Scholar 

  24. Goslin, K., Asmussen, H., and Banker, G. (1998) Rat hippocampal neurons in low density culture. In: Culturing Nerve Cells (Goslin, K. and Banker, G., eds.), pp. 339–370. MIT Press, Cambridge.

    Google Scholar 

  25. Avila, D.M., Allman, D.R., Gallo, J.M., and McPhaul, M.J. (2003) Androgen receptors containing expanded polyglutamine tracts exhibit progressive toxicity when stably expressed in the neuroblastoma cell line, SH-SY 5Y. Exp. Biol. Med. (Maywood) 228(8), 982–990.

    CAS  Google Scholar 

  26. Greene, L.A., Farinelli, S.E., Cunningham, M.E., and Park, D.S. (1998) Culture and experimental use of PC12 rat pheochromocytoma cell line. In: Culturing Nerve Cells (Banker G. and Goslin, K., eds.), pp. 161–188. MIT Press, Cambridge.

    Google Scholar 

  27. Miki, H., Setou, M., Kaneshiro, K., and Hirokawa, N. (2001) All kinesin super-family protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98(13), 7004–7011.

    Article  CAS  PubMed  Google Scholar 

  28. Rahman, A., Friedman, D.S., and Goldstein, L.S. (1998) Two kinesin light chain genes in mice. J. Biol. Chem. 273, 15395–15403.

    Article  CAS  PubMed  Google Scholar 

  29. Junco, A., Bhullar, B., Tarnasky, H.A., and van der Hoorn, F.A. (2001) Kinesin light-chain KLC3 expression in testis is restricted to spermatids. Biol. Reprod. 64(5), 1320–1330.

    Article  CAS  PubMed  Google Scholar 

  30. Wagner, M.C., Pfister, K.K., Brady, S.T., and Bloom, G.S. (1991) Purification of kinesin from bovine brain and assay of micro tubule-stimulated ATPase activity. Methods Enzymol. 196, 157–175.

    Article  CAS  PubMed  Google Scholar 

  31. Tsai, M.-Y., Morfini, G., Szebenyi, G., and Brady, S.T. (2000) Modulation of kinesin-vesicle interactions by Hsc70: implications for regulation of fast axonal transport. Mol. Biol. Cell 11, 2161–2173.

    CAS  PubMed  Google Scholar 

  32. Bain, J., McLauchlan, H., Elliott, M., and Cohen, P. (2003) The specificities of protein kinase inhibitors: an update. Biochem. J. 371 (Pt. 1), 199–204.

    Article  CAS  PubMed  Google Scholar 

  33. Davies, S.P., Reddy, H., Caivano, M., and Cohen, P. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351 (Pt. 1), 95–105.

    Article  CAS  PubMed  Google Scholar 

  34. Lindesmith, L., McIlvain, J.M., Jr., Argon, Y., and Sheetz, M.P. (1997) Phosphotransferases associated with the regulation of kinesin motor activity. J. Biol. Chem. 272(36), 22929–22933.

    Article  CAS  PubMed  Google Scholar 

  35. Sato-Yoshitake, R., Yorifuji, H., Inagaki, M., and Hirokawa, N. (1992) The phosphorylation of kinesin regulates its binding to synaptic vesicles. J. Biol. Chem. 267, 23930–23936.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Morfini, G., Pigino, G., Brady, S.T. (2007). Approaches to Kinesin-1 Phosphorylation. In: Sperry, A.O. (eds) Molecular Motors. Methods in Molecular Biology™, vol 392. Humana Press. https://doi.org/10.1007/978-1-59745-490-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-490-2_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-665-8

  • Online ISBN: 978-1-59745-490-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics