Skip to main content

Clonal Analysis of Hedgehog Signaling in Drosophila Somatic Tissues

  • Protocol
Hedgehog Signaling Protocols

Part of the book series: Methods Inmolecular Biology™ ((MIMB,volume 397))

Abstract

To fully understand how animals develop, it is often necessary to remove the function of a particular gene in a specific cell type or subset of cells. In Drosophila melanogaster, mosaic animals have been widely utilized to study cell fate, growth and patterning, and restriction of cell fate. This chapter describes using FLP recombinase to generate mosaic Drosophila, discussing the chromosomes and cross scheme, how to induce the clones, how to properly identify the appropriate progeny, and how to prepare and analyze the tissues, clones, and phenotypes. It then presents three examples, applying this technique to study Hedgehog signaling. The first example describes moderate-sized costal clones in imaginal discs, using green fluorescent protein (GFP) as a marker and dppLacZ and Engrailed expression as phenotypic reporters. The second describes filling the adult eye with roadkill mutant clones, using white as a marker and scoring morphology. The third describes clonal misexpression of a truncated form of Smoothened, using GFP and yellow as markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Postlethwait, J. H. (1976) Clonal analysis of Drosophila cuticle patterns. In The Genetics and Biology of Drosophila (Ashburner, M. and Wright, T. R. F., eds), Vol. 2c, Academic Press, New York, pp. 359–441.

    Google Scholar 

  2. Ashburner, M. (1989) Drosophila: A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  3. Golic, K. G. and Lindquist, S. (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.

    Article  CAS  PubMed  Google Scholar 

  4. Xu, T. and Rubin, G. M. (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.

    CAS  PubMed  Google Scholar 

  5. Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    CAS  PubMed  Google Scholar 

  6. Garcia-Bellido, A. and Dapena, J. (1974) Induction, detection and characterization of cell differentiation mutants in Drosophila. Mol. Gen. Genet. 128, 117–130.

    Article  CAS  PubMed  Google Scholar 

  7. Stowers, R. S. and Schwarz, T. L. (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639.

    CAS  PubMed  Google Scholar 

  8. Moreno, E., Basler, K., and Morata, G. (2002) Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759.

    Article  CAS  PubMed  Google Scholar 

  9. Motzny, C. K. and Holmgren, R. (1995) The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev. 52, 137–150.

    Article  CAS  PubMed  Google Scholar 

  10. Capdevila, J. and Guerrero, I. (1994) Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 13, 4459–4468.

    CAS  PubMed  Google Scholar 

  11. Crozatier, M. and Vincent, A. (1999) Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signaling. Development 126, 1495–1504.

    CAS  PubMed  Google Scholar 

  12. Diez del Corral, R., Aroca, P., Gmez-Skarmeta, J.L., Cavodeassi, F., and Modolell, J. (1999) The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev. 13, 1754–1761.

    Article  CAS  PubMed  Google Scholar 

  13. Bentrop, J., Schwab, K., Pak, W. L., and Paulsen, R. (1997) Site-directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state. EMBO J. 16, 1600–1609.

    Article  CAS  PubMed  Google Scholar 

  14. Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771.

    CAS  PubMed  Google Scholar 

  15. Lee, T. and Luo, L. (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, T. and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461.

    Article  CAS  PubMed  Google Scholar 

  17. Methot, N. and Basler, K. (2000) Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development 127, 4001–4010.

    CAS  PubMed  Google Scholar 

  18. Hooper, J. E. (2003) Smoothened translates Hedgehog levels into distinct responses. Development 130, 3951–3963.

    Article  CAS  PubMed  Google Scholar 

  19. Struhl, G. and Basler, K. (1993) Organizing activity of wingless protein in Drosophila. Cell 72, 527–540.

    Article  CAS  PubMed  Google Scholar 

  20. Chou, T. B. and Perrimon, N. (1992) Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653.

    CAS  PubMed  Google Scholar 

  21. Methot, N. and Basler, K. (1999) Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96, 819–831.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Y. and Struhl, G. (1996) In vivo evidence that Patched and Smoothened constitute distinct binding and transducing components of a Hedgehog receptor complex. Cell 87, 553–563.

    Article  CAS  PubMed  Google Scholar 

  23. Sisson, J. C., Ho, K. S., Suyama, K., and Scott, M. P. (1997) Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235–245.

    Article  CAS  PubMed  Google Scholar 

  24. Li, W., Ohlmeyer, J. T., Lane, M. E., and Kalderon, D. (1995) Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80, 553–562.

    Article  CAS  PubMed  Google Scholar 

  25. Lefers, M. A., Wang, Q. T., and Holmgren, R. A. (2001) Genetic dissection of the Drosophila Cubitus interruptus signaling complex. Dev. Biol. 236, 411–420.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, J. and Struhl, G. (1995) Protein kinase A and Hedgehog signaling in Drosophila limb development. Cell 80, 563–572.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bankers, C.M., Hooper, J.E. (2007). Clonal Analysis of Hedgehog Signaling in Drosophila Somatic Tissues. In: Horabin, J.I. (eds) Hedgehog Signaling Protocols. Methods Inmolecular Biology™, vol 397. Humana Press. https://doi.org/10.1007/978-1-59745-516-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-516-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-692-4

  • Online ISBN: 978-1-59745-516-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics