Skip to main content

DNA Methylation: An Introduction to the Biology and the Disease-Associated Changes of a Promising Biomarker

  • Protocol
DNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 507))

Abstract

DNA methylation occurring on the 5 position of the pyrimidine ring of cytosines in the context of the dinucleotide sequence CpG forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin-remodeling complexes to form the genomic chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting, and plays a role in maintaining genomic stability as well as in dosage compensation. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins whereby the epigenome seems to be most vulnerable during early in utero development. Aberrant DNA methylation changes have been detected in several diseases, particularly cancer where genome-wide hypomethylation coincides with gene-specific hypermethylation. DNA methylation patterns can be used to detect cancer at very early stages, to classify tumors as well as predict and monitor the response to antineoplastic treatment. As a stable nucleic acid-based modification with limited dynamic range that is technically easy to handle, DNA methylation is a promising biomarker for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington, C. H. (1942) The epigenotype. Endeavour 1, 18–20.

    Google Scholar 

  2. Tost, J. (2008) Epigenetics, Horizon Scientific Press, Norwich, UK.

    Google Scholar 

  3. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693–705.

    Article  CAS  PubMed  Google Scholar 

  4. Nightingale, K. P., O’Neill, L. P., Turner, B. M. (2006) Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16, 125–136.

    Article  CAS  PubMed  Google Scholar 

  5. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21.

    Article  CAS  PubMed  Google Scholar 

  6. Antequera, F. (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60, 1647–1658.

    Article  CAS  PubMed  Google Scholar 

  7. Shen, L., Kondo, Y., Guo, Y., et al. (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3, 2023–2036.

    Article  CAS  PubMed  Google Scholar 

  8. Takai, D., Jones, P. A. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99, 3740–3745.

    Article  CAS  PubMed  Google Scholar 

  9. Feltus, F. A., Lee, E. K., Costello, J. F., et al. (2006) DNA motifs associated with aberrant CpG island methylation. Genomics 87, 572–579.

    Article  CAS  PubMed  Google Scholar 

  10. Bock, C., Paulsen, M., Tierling, S., et al. (2006) CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet 2, e26.

    Article  PubMed  Google Scholar 

  11. Jia, D., Jurkowska, R. Z., Zhang, X., et al. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248–251.

    Article  CAS  PubMed  Google Scholar 

  12. Ulrey, C. L., Liu, L., Andrews, L. G., et al. (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14 Spec No 1, R139–147.

    Article  Google Scholar 

  13. Klose, R. J., Bird, A. P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31, 89–97.

    Article  CAS  PubMed  Google Scholar 

  14. Filion, G. J., Zhenilo, S., Salozhin, S., et al. (2006) A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 26, 169–181.

    Article  CAS  PubMed  Google Scholar 

  15. Barreto, G., Schafer, A., Marhold, J., et al. (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675.

    Article  CAS  PubMed  Google Scholar 

  16. Morgan, H. D., Dean, W., Coker, H. A., et al. (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279, 52353–52360.

    Article  CAS  PubMed  Google Scholar 

  17. Reik, W., Dean, W., Walter, J. (2001) Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.

    Article  CAS  PubMed  Google Scholar 

  18. Lees-Murdock, D. J., Walsh, C. P. (2008) DNA methylation reprogramming in the germ line. Epigenetics 3, 5–13.

    Article  PubMed  Google Scholar 

  19. Fauque, P., Jouannet, P., Lesaffre, C., et al. (2007) Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol 7, 116.

    Article  PubMed  Google Scholar 

  20. Paoloni-Giacobino, A. (2007) Epigenetics in reproductive medicine. Pediatr Res 61, 51R–57R.

    Article  CAS  PubMed  Google Scholar 

  21. Niemann, H., Tian, X. C., King, W. A., et al. (2008) Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning: focus on mammalian embryogenomics. Reproduction 135, 151–163.

    Article  CAS  PubMed  Google Scholar 

  22. Fraga, M. F., Esteller, M. (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23, 413–418.

    Article  CAS  PubMed  Google Scholar 

  23. Geiman, T. M., Robertson, K. D. (2002) Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 87, 117–125.

    Article  CAS  PubMed  Google Scholar 

  24. Ushijima, T. (2005) Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5, 223–231.

    Article  CAS  PubMed  Google Scholar 

  25. Cameron, E. E., Baylin, S. B., Herman, J. G. (1999) p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94, 2445–2451.

    CAS  PubMed  Google Scholar 

  26. Pao, M. M., Tsutsumi, M., Liang, G., et al. (2001) The endothelin receptor B (EDNRB) promoter displays heterogeneous, site specific methylation patterns in normal and tumor cells. Hum Mol Genet 10, 903–910.

    Article  CAS  PubMed  Google Scholar 

  27. Brinkman, A. B., Pennings, S. W., Braliou, G. G., et al. (2007) DNA methylation immediately adjacent to active histone marking does not silence transcription. Nucleic Acids Res 35, 801–811.

    Article  CAS  PubMed  Google Scholar 

  28. Yoder, J. A., Walsh, C. P., Bestor, T. H. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13, 335–340.

    Article  CAS  PubMed  Google Scholar 

  29. Reik, W., Walter, J. (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2, 21–32.

    Article  CAS  PubMed  Google Scholar 

  30. Holmes, R., Soloway, P. D. (2006) Regulation of imprinted DNA methylation. Cytogenet Genome Res 113, 122–129.

    Article  CAS  PubMed  Google Scholar 

  31. Lewis, A., Reik, W. (2006) How imprinting centres work. Cytogenet Genome Res 113, 81–89.

    Article  CAS  PubMed  Google Scholar 

  32. Luedi, P. P., Dietrich, F. S., Weidman, J. R., et al. (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17, 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  33. Kurukuti, S., Tiwari, V. K., Tavoosidana, G., et al. (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 103, 10684–10689.

    Article  CAS  PubMed  Google Scholar 

  34. Heard, E., Disteche, C. M. (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20, 1848–1867.

    Article  CAS  PubMed  Google Scholar 

  35. Fraga, M. F., Ballestar, E., Paz, M. F., et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102, 10604–10609.

    Article  CAS  PubMed  Google Scholar 

  36. Friso, S., Choi, S. W., Girelli, D., et al. (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99, 5606–5611.

    Article  CAS  PubMed  Google Scholar 

  37. Waterland, R. A., Jirtle, R. L. (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23, 5293–5300.

    Article  CAS  PubMed  Google Scholar 

  38. Tang, W. Y., Ho, S. M. (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8, 173–182.

    Article  PubMed  Google Scholar 

  39. Bollati, V., Baccarelli, A., Hou, L., et al. (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67, 876–880.

    Article  CAS  PubMed  Google Scholar 

  40. Feil, R. (2006) Environmental and nutritional effects on the epigenetic regulation of genes. Mutat Res 600, 46–57.

    CAS  PubMed  Google Scholar 

  41. Anway, M. D., Cupp, A. S., Uzumcu, M., et al. (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469.

    Article  CAS  PubMed  Google Scholar 

  42. Cuzin, F., Grandjean, V., Rassoulzadegan, M. (2008) Inherited variation at the epigenetic level: paramutation from the plant to the mouse. Curr Opin Genet Dev, 193–196.

    Google Scholar 

  43. Rassoulzadegan, M., Grandjean, V., Gounon, P., et al. (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474.

    Article  CAS  PubMed  Google Scholar 

  44. Chong, S., Whitelaw, E. (2004) Epigenetic germline inheritance. Curr Opin Genet Dev 14, 692–696.

    Article  CAS  PubMed  Google Scholar 

  45. Robertson, K. D. (2005) DNA methylation and human disease. Nat Rev Genet 6, 597–610.

    Article  CAS  PubMed  Google Scholar 

  46. Jones, P. A., Baylin, S. B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428.

    Article  CAS  PubMed  Google Scholar 

  47. Laird, P. W. (2005) Cancer epigenetics. Hum Mol Genet 14 Spec No 1, R65–76.

    Google Scholar 

  48. Feinberg, A. P., Vogelstein, B. (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92.

    Article  CAS  PubMed  Google Scholar 

  49. Ehrlich, M. (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–5413.

    Article  CAS  PubMed  Google Scholar 

  50. Frigola, J., Song, J., Stirzaker, C., et al. (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38, 540–549.

    Article  CAS  PubMed  Google Scholar 

  51. Stransky, N., Vallot, C., Reyal, F., et al. (2006) Regional copy number-independent deregulation of transcription in cancer. Nat Genet 38, 1386–1396.

    Article  CAS  PubMed  Google Scholar 

  52. Hedenfalk, I., Duggan, D., Chen, Y., et al. (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344, 539–548.

    Article  CAS  PubMed  Google Scholar 

  53. Knudson, A. G. (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1, 157–162.

    Article  CAS  PubMed  Google Scholar 

  54. Balmain, A., Gray, J., Ponder, B. (2003) The genetics and genomics of cancer. Nat Genet 33 Suppl, 238–244.

    Article  CAS  PubMed  Google Scholar 

  55. Costello, J. F., Frühwald, M. C., Smiraglia, D. J., et al. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24, 132–138.

    Article  CAS  PubMed  Google Scholar 

  56. Goelz, S. E., Vogelstein, B., Hamilton, S. R., et al. (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187–190.

    Article  CAS  PubMed  Google Scholar 

  57. Issa, J. P., Ahuja, N., Toyota, M., et al. (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61, 3573–3577.

    CAS  PubMed  Google Scholar 

  58. Laird, P. W. (2003) Early detection: the power and the promise of DNA methylation markers. Nat Rev Cancer 3, 253–266.

    Article  CAS  PubMed  Google Scholar 

  59. Silva, J. M., Dominguez, G., Garcia, J. M., et al. (1999) Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res 59, 3251–3256.

    CAS  PubMed  Google Scholar 

  60. Fleischhacker, M., Schmidt, B. (2007) Circulating nucleic acids (CNAs) and cancer – a survey. Biochim Biophys Acta 1775, 181–232.

    CAS  PubMed  Google Scholar 

  61. Tost, J. (2007) Analysis of DNA methylation patterns for the early diagnosis, classification and therapy of human cancers, in (Kobayashi, T. B., ed.), DNA Methylation Research Trends, pp. 87–133, Nova Science Publishers, Hauppauge, NY.

    Google Scholar 

  62. Yoo, C. B., Jones, P. A. (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5, 37–50.

    Article  CAS  PubMed  Google Scholar 

  63. van Vliet, J., Oates, N. A., Whitelaw, E. (2007) Epigenetic mechanisms in the context of complex diseases. Cell Mol Life Sci 64, 1531–1538.

    Article  PubMed  Google Scholar 

  64. Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., et al. (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15, 3132–3145.

    Article  CAS  PubMed  Google Scholar 

  65. Nagarajan, R. P., Hogart, A. R., Gwye, Y., et al. (2006) Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1, 172–182.

    Article  Google Scholar 

  66. Balada, E., Ordi-Ros, J., Vilardell-Tarres, M. (2007) DNA methylation and systemic lupus erythematosus. Ann NY Acad Sci 1108, 127–136.

    Article  CAS  PubMed  Google Scholar 

  67. Neidhart, M., Rethage, J., Kuchen, S., et al. (2000) Retro transposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 43, 2634–2647.

    Article  CAS  PubMed  Google Scholar 

  68. Junien, C., Nathanielsz, P. (2007) Report on the IASO Stock Conference 2006: early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes. Obes Rev 8, 487–502.

    Article  CAS  PubMed  Google Scholar 

  69. Tufarelli, C., Stanley, J. A., Garrick, D., et al. (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34, 157–165.

    Article  CAS  PubMed  Google Scholar 

  70. Issa, J. P. (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4, 988–993.

    Article  CAS  PubMed  Google Scholar 

  71. Simon, R. (2005) Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 23, 7332–7341.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Tost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tost, J. (2009). DNA Methylation: An Introduction to the Biology and the Disease-Associated Changes of a Promising Biomarker. In: Tost, J. (eds) DNA Methylation. Methods in Molecular Biology, vol 507. Humana Press. https://doi.org/10.1007/978-1-59745-522-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-522-0_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-61-9

  • Online ISBN: 978-1-59745-522-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics