Skip to main content

Structural Probing of RNA Thermosensors

  • Protocol
  • First Online:
Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

Summary

Chemical probing of RNA structure has become one of the most popular approaches to map the conformation of RNA molecules of various sizes under well-defined experimental conditions. The method monitors the sensitivity of each nucleotide to various chemicals, which reflects its hydrogen-bonding environment within the RNA molecule. The goal of this chapter is to provide the reader with an experimental guide to mapping the secondary structure of RNA thermosensors in vitro with the most suitable chemical probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narberhaus, F., Waldminghaus, T. and Chowdhury, S. (2006). RNA thermometers. FEMS Microbiol. Rev. 30, 3–16.

    Article  PubMed  CAS  Google Scholar 

  2. Morita, M. T., Tanaka, Y., Kodama, T. S., Kyogoku, Y., Yanagi, H. and Yura, T. (1999). Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev. 13, 655–665.

    Article  PubMed  CAS  Google Scholar 

  3. Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M. and Cossart, P. (2002). An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561.

    Google Scholar 

  4. Hoe, N. P. and Goguen, J. D. (1993). Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J. Bacteriol. 175, 7901–7909.

    PubMed  CAS  Google Scholar 

  5. Yamanaka, K., Mitta, M. and Inouye, M. (1999). Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J. Bacteriol. 181, 6284–6291.

    PubMed  CAS  Google Scholar 

  6. Altuvia, S., Kornitzer, D., Teff, D. and Oppenheim, A. B. (1989). Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J. Mol. Biol. 210, 265–280.

    Article  PubMed  CAS  Google Scholar 

  7. Mayford, M. and Weisblum, B. (1989). Conformational alterations in the ermC transcript in vivo during induction. EMBO J. 8, 4307–4314.

    PubMed  CAS  Google Scholar 

  8. Benito, Y., Kolb, F. A., Romby, P., Lina, G., Etienne, J. and Vandenesch, F. (2000). Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6, 668–679.

    Article  PubMed  CAS  Google Scholar 

  9. Balzer, M. and Wagner, R. (1998). A chemical modification method for the structural analysis of RNA and RNA–protein complexes within living cells. Anal. Biochem. 256, 240–242.

    Article  PubMed  CAS  Google Scholar 

  10. Lindell, M., Romby, P. and Wagner, E. G. (2002). Lead(II) as a probe for investigating RNA structure in vivo. RNA 8, 534–541.

    Article  PubMed  CAS  Google Scholar 

  11. Michel, F. and Costa, M. (1998). in RNA Structure and Function, eds. Simons, R. W. and Grunberg-Manago, M. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), pp. 175–202.

    Google Scholar 

  12. Eddy, S. R. (2002). A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 3, 18.

    Article  PubMed  Google Scholar 

  13. Xu, X., Ji, Y. and Stormo, G. D. (2007). RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment. Bioinformatics 23, 1883–1891.

    Article  PubMed  CAS  Google Scholar 

  14. van Batenburg, F. H., Gultyaev, A. P. and Pleij, C. W. (1995). An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J. Theor. Biol. 174, 269–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ciaran Condon for critical reading of the manuscript. This work was supported by the CNRS (UPR9073), the University of Paris Diderot-Paris VII, and the ANR (ANR-05-BLAN-0159-01).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chiaruttini, C., Allem, F., Springer, M. (2009). Structural Probing of RNA Thermosensors . In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics