Skip to main content

The Albino Xenopus laevis Tadpole as a Novel Model of Developmental Seizures

  • Protocol
  • First Online:
Animal Models of Epilepsy

Part of the book series: Neuromethods ((NM,volume 40))

  • 966 Accesses

Abstract

Here we describe a novel model system based on the transparent albino Xenopus laevis tadpole which is particularly well suited for the study of seizures and their sequelae within the intact developing brain. This system allows in vivo imaging of neuronal circuit activity with single-cell resolution, as well as acute and long-term imaging of neuronal growth and synapse formation, within the intact unanesthetized brain. Mounting evidence supports a strong role for neuronal transmission in regulating major aspects of brain circuit formation, including synaptogenesis, synapse strengthening and elimination, as well as axonal and dendritic arbor growth. Given the high incidence of seizures during periods of early brain development in humans, such model systems are necessary to better understand how paroxysmal seizure activity may alter activity-dependent processes occurring during development and whether early-life seizures induce persistent aberrant alterations in neural circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Ari Y, Holmes GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol 2006;5:1055–63.

    Article  PubMed  Google Scholar 

  2. Cowan LD. The epidemiology of the epilepsies in children. Ment Retard Dev Disabil Res Rev 2002;8:171–81.

    Article  PubMed  Google Scholar 

  3. Hauser WA. Epidemiology of epilepsy in children. Neurosurg Clin N Am 1995;6: 419–29.

    PubMed  CAS  Google Scholar 

  4. Jensen FE, Baram TZ. Developmental seizures induced by common early-life insults: Short- and long-term effects on seizure susceptibility. Ment Retard Dev Disabil Res Rev 2000;6:253–7.

    Article  PubMed  CAS  Google Scholar 

  5. Sin WC, Haas K, Ruthazer ES, Cline HT. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 2002;419:475–80.

    Article  PubMed  CAS  Google Scholar 

  6. Ruthazer ES, Akerman CJ, Cline HT. Control of axon branch dynamics by correlated activity in vivo. Science 2003;301:66–70.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen-Cory S. The developing synapse: Construction and modulation of synaptic structures and circuits. Science 2002;298:770–6.

    Article  PubMed  CAS  Google Scholar 

  8. Cornaggia CM, Beghi M, Provenzi M, Beghi E. Correlation between cognition and behavior in epilepsy. Epilepsia 2006;47(Suppl) 2:34–9.

    Article  PubMed  Google Scholar 

  9. Gaitatzis A, Trimble MR, Sander JW. The psychiatric comorbidity of epilepsy. Acta Neurol Scand 2004;110:207–20.

    Article  PubMed  CAS  Google Scholar 

  10. Vestergaard M, Pedersen CB, Christensen J, Madsen KM, Olsen J, Mortensen PB. Febrile seizures and risk of schizophrenia. Schizophr Res 2005;73:343–9.

    Article  PubMed  Google Scholar 

  11. Vestergaard M, Pedersen CB, Sidenius P, Olsen J, Christensen J. The long-term risk of epilepsy after febrile seizures in susceptible subgroups. Am J Epidemiol 2007;165:911–18.

    Article  PubMed  Google Scholar 

  12. Annegers JF, Hauser WA, Shirts SB, Kurland LT. Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med1987;316:493–8.

    Article  PubMed  CAS  Google Scholar 

  13. Shinnar S, Hauser WA. Do occasional brief seizures cause detectable clinical consequences? Prog Brain Res 2002;135:221–35.

    Article  PubMed  Google Scholar 

  14. Swinkels WA, Kuyk J, van Dyck R, Spinhoven P. Psychiatric comorbidity in epilepsy. Epilepsy Behav 2005;7:37–50.

    Article  PubMed  CAS  Google Scholar 

  15. Tsopelas ND, Saintfort R, Fricchione GL. The relationship of psychiatric illnesses and seizures. Curr Psychiatry Rep 2001;3:235–42.

    Article  PubMed  CAS  Google Scholar 

  16. Holmes GL, Ben-Ari Y. The neurobiology and consequences of epilepsy in the developing brain. Pediatr Res 2001;49:320–5.

    Article  PubMed  CAS  Google Scholar 

  17. Lynch M, Sayin U, Bownds J, Janumpalli S, Sutula T. Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci 2000; 12:2252–64.

    Article  PubMed  CAS  Google Scholar 

  18. Holmes GL. Effects of seizures on brain development: Lessons from the laboratory. Pediatr Neurol 2005;33:1–11.

    Article  PubMed  Google Scholar 

  19. Holopainen IE. Seizures in the developing brain: Cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Neurochem Int 2008;52:935–47.

    Article  PubMed  CAS  Google Scholar 

  20. Baraban SC. Emerging epilepsy models: Insights from mice, flies, worms and fish. Curr Opin Neurol 2007;20:164–8.

    Article  PubMed  CAS  Google Scholar 

  21. Hewapathirane DS, Dunfield D, Yen W, Chen S, Haas K. In vivo imaging of seizure activity in a novel developmental seizure model. Exp Neurol 2008;211(2):480–8.

    Article  PubMed  Google Scholar 

  22. Holmes GL. Seizure-induced brain damage: From tadpoles to children. Exp Neurol 2008;213(1):7–9.

    Google Scholar 

  23. Meyer RL. Roger Sperry and his chemoaffinity hypothesis. Neuropsychologia 1998;36:957–80.

    Article  PubMed  CAS  Google Scholar 

  24. Aizenman CD, Cline HT. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection. J Neurophysiol 2007;97:2949–57.

    Article  PubMed  Google Scholar 

  25. Tao HW, Zhang LI, Engert F, Poo M. Emergence of input specificity of ltp during development of retinotectal connections in vivo. Neuron 2001;31:569–80.

    Article  PubMed  CAS  Google Scholar 

  26. Vislay-Meltzer RL, Kampff AR, Engert F. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system. Neuron 2006;50:101–14.

    Article  PubMed  CAS  Google Scholar 

  27. Nieuwkoop PD, Faber J. Normal table of Xenopus laevis. Amsterdam: Elsevier North Holland Publishing Company; 1994.

    Google Scholar 

  28. Bennett JM. Modification of strychnine-induced convulsions by anticonvulsants in the frog. Neuropharmacology 1972;11:297–9.

    Article  PubMed  CAS  Google Scholar 

  29. Servi Z, Strejckova A. Epileptogenic focus in the frog telencephalon. Seizure irradiation from the focus. Physiol Bohemoslov 1967;16:522–30.

    PubMed  CAS  Google Scholar 

  30. Morrell F, Tsuru N. Kindling in the frog: Development of spontaneous epileptiform activity. Electroencephalogr Clin Neurophysiol 1976;40:1–11.

    Article  PubMed  CAS  Google Scholar 

  31. Ahmad A, Dhawan BN. Metrazol test for rapid screening of anticonvulsants. Jpn J Pharmacol 1969;19:472–4.

    Article  PubMed  CAS  Google Scholar 

  32. Velisek L, Veliskova J, Moshe SL. Developmental seizure models. Ital J Neurol Sci 1995;16:127–33.

    Article  PubMed  CAS  Google Scholar 

  33. Gallagher TJ, Galindo A, Richey ET. Inhibition of seizure activity during enflurance anesthesia. Anesth Analg 1978;57:130–2.

    Article  PubMed  CAS  Google Scholar 

  34. Ishizawa Y. Mechanisms of anesthetic actions and the brain. J Anesth 2007;21:187–99.

    Article  PubMed  Google Scholar 

  35. Smetters D, Majewska A, Yuste R. Detecting action potentials in neuronal populations with calcium imaging. Methods 1999;18:215–21.

    Article  PubMed  CAS  Google Scholar 

  36. Ramdya P, Reiter B, Engert F. Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo. J Neurosci Methods 2006;157:230–7.

    Article  PubMed  CAS  Google Scholar 

  37. Badea T, Goldberg J, Mao B, Yuste R. Calcium imaging of epileptiform events with single-cell resolution. J Neurobiol 2001;48:215–27.

    Article  PubMed  CAS  Google Scholar 

  38. Haas K, Jensen K, Sin WC, Foa L, Cline HT. Targeted electroporation in Xenopus tadpoles in vivo–from single cells to the entire brain. Differentiation 2002;70:148–54.

    Article  PubMed  CAS  Google Scholar 

  39. Haas K, Sin WC, Javaherian A, Li Z, Cline HT. Single-cell electroporation for gene transfer in vivo. Neuron 2001;29:583–91.

    Article  PubMed  CAS  Google Scholar 

  40. Haas K, Li J, Cline HT. AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proc Natl Acad Sci U S A 2006;103:12127–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hewapathirane, D.S., Haas, K. (2009). The Albino Xenopus laevis Tadpole as a Novel Model of Developmental Seizures. In: Baraban, S. (eds) Animal Models of Epilepsy. Neuromethods, vol 40. Humana Press. https://doi.org/10.1007/978-1-60327-263-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-263-6_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-262-9

  • Online ISBN: 978-1-60327-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics