Skip to main content

Mouse Models of Benign Familial Neonatal Convulsions (BFNC): Mutations in KCNQ (Kv7) Genes

  • Protocol
  • First Online:
Animal Models of Epilepsy

Part of the book series: Neuromethods ((NM,volume 40))

  • 908 Accesses

Abstract

Benign familial neonatal convulsions (BFNC) is caused by mutations in the KCNQ2 (Kv7.2) or KCNQ3 (Kv7.3) genes. These genes encode the KCNQ2 and KCNQ3 subunits that comprise the neuronal M-type potassium channel (M channel). While numerous studies have provided evidence for the inhibitory role of normally functioning M channels in key brain structures related to seizures and epileptogenesis, the BFNC sequelae from mutation to seizure and ultimately to remission is likely very complex. In an effort to determine the role of the KCNQ genes in epilepsy, a number of mouse models with either spontaneous or transgenic mutations or targeted deletions in the Kcnq2 or Kcnq3 gene have been described. We discuss seminal findings from the Kcnq2 knockout, the dominant-negative Kcnq2 G279S, the Szt1, and finally the recently described Kcnq2 and Kcnq3 knockin, mice. The approach of combining whole-animal behavior with single-cell biophysics in mouse models of BFNC has helped solidify the link between attenuated I K(M) function and increased seizure susceptibility that results from Kcnq2 and Kcnq3 mutations. The mouse models described here have all significantly contributed to our understanding of how mutations in these genes might precipitate human epilepsy and further elucidated the neurophysiologic role of I K(M).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rett A, Teubel R.Neugeborenen Krampfe im Rahmen einer epileptisch belasten Familie. Wiener Klinische Wochenschrift 1964;76:609–613.

    Google Scholar 

  2. Ronen GM, Rosales TO, Connolly M, Anderson VE, Leppert M. Seizure characteristics in chromosome 20 benign familial neonatal convulsions. Neurology 1993;43(7):1355–1360.

    PubMed  CAS  Google Scholar 

  3. Zonana J, Silvey K, Strimling B. Familial neonatal and infantile seizures: An autosomal-dominant disorder. Am J Med Genet 1984;18(3):455–459.

    Article  PubMed  CAS  Google Scholar 

  4. Leppert M, Anderson VE, Quattlebaum T, Stauffer D, O'Connell P, Nakamura Y, et al. Benign familial neonatal convulsions linked to genetic markers on chromosome 20. Nature 1989;337(6208):647–648.

    Article  PubMed  CAS  Google Scholar 

  5. Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: Expansion of the functional and mutation spectrum. Brain 2003;126(Pt 12):2726–2737.

    Article  PubMed  Google Scholar 

  6. Leppert M, Anderson VE, White R. The discovery of epilepsy genes by genetic linkage. Epilepsy Res Suppl 1991;4:181–188.

    PubMed  CAS  Google Scholar 

  7. Leppert M, McMahon WM, Quattlebaum TG, Bjerre I, Zonana J, Shevell MI, et al. Searching for human epilepsy genes: A progress report. Brain Pathol 1993;3(4):357–369.

    Article  PubMed  CAS  Google Scholar 

  8. Lewis TB, Leach RJ, Ward K, O'Connell P, Ryan SG. Genetic heterogeneity in benign familial neonatal convulsions: identification of a new locus on chromosome 8q. Am J Hum Genet 1993;53(3):670–675.

    PubMed  CAS  Google Scholar 

  9. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279(5349):403–406.

    Article  PubMed  CAS  Google Scholar 

  10. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18(1):25–29.

    Article  PubMed  CAS  Google Scholar 

  11. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18(1):53–55.

    Article  PubMed  CAS  Google Scholar 

  12. Heron SE, Cox K, Grinton BE, Zuberi SM, Kivity S, Afawi Z, et al. Deletions or duplications in KCNQ2 can cause benign familial neonatal seizures. J Med Genet 2007;44(12):791–796.

    Article  PubMed  CAS  Google Scholar 

  13. Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 2001;98(21):12272–12277.

    Article  PubMed  CAS  Google Scholar 

  14. Coppola G, Castaldo P, Miraglia del Giudice E, Bellini G, Galasso F, Soldovieri MV, et al. A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology 2003;61(1):131–134.

    PubMed  CAS  Google Scholar 

  15. Maihara T, Tsuji M, Higuchi Y, Hattori H. Benign familial neonatal convulsions followed by benign epilepsy with centrotemporal spikes in two siblings. Epilepsia 1999;40(1):110–113.

    Article  PubMed  CAS  Google Scholar 

  16. Zimprich F, Ronen GM, Stogmann W, Baumgartner C, Stogmann E, Rett B, et al. Andreas Rett and benign familial neonatal convulsions revisited. Neurology 2006;67(5):864–866.

    Article  PubMed  CAS  Google Scholar 

  17. Bassi MT, Balottin U, Panzeri C, Piccinelli P, Castaldo P, Barrese V, et al. Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC). Neurogenetics 2005;6(4):185–193.

    Article  PubMed  Google Scholar 

  18. Borgatti R, Zucca C, Cavallini A, Ferrario M, Panzeri C, Castaldo P, et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology 2004;63(1):57–65.

    PubMed  CAS  Google Scholar 

  19. Dedek K, Fusco L, Teloy N, Steinlein OK. Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res 2003;54(1):21–27.

    Article  PubMed  CAS  Google Scholar 

  20. Schmitt B, Wohlrab G, Sander T, Steinlein OK, Hajnal BL. Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res 2005;65(3):161–168.

    Article  PubMed  Google Scholar 

  21. Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H. Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 2007;69(22):2045–2053.

    Article  PubMed  CAS  Google Scholar 

  22. Claes LR, Ceulemans B, Audenaert D, Deprez L, Jansen A, Hasaerts D, et al. De novo KCNQ2 mutations in patients with benign neonatal seizures. Neurology 2004;63(11):2155–2158.

    PubMed  CAS  Google Scholar 

  23. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, et al. KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M-channel. Science 1998;282(5395):1890–1893.

    Article  PubMed  CAS  Google Scholar 

  24. Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem 2000;275(29):22395–22400.

    Article  PubMed  CAS  Google Scholar 

  25. Marrion NV. Control of M-current. Annu Rev Physiol 1997;59:483–504.

    Article  PubMed  CAS  Google Scholar 

  26. Schwake M, Pusch M, Kharkovets T, Jentsch TJ. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem 2000;275(18):13343–13348.

    Article  PubMed  CAS  Google Scholar 

  27. Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 2000;275(31):24089–24095.

    Article  PubMed  CAS  Google Scholar 

  28. Jentsch TJ. Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci 2000;1(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  29. Schroeder BC, Kubisch C, Stein V, Jentsch TJ. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 1998;396(6712):687–690.

    Article  PubMed  CAS  Google Scholar 

  30. Miraglia del Giudice E, Coppola G, Scuccimarra G, Cirillo G, Bellini G, Pascotto A. Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor. Eur J Hum Genet 2000;8(12):994–997.

    Article  PubMed  CAS  Google Scholar 

  31. Moulard B, Picard F, le Hellard S, Agulhon C, Weiland S, Favre I, et al. Ion channel variation causes epilepsies. Brain Res Brain Res Rev 2001;36(2–3):275–284.

    Article  PubMed  CAS  Google Scholar 

  32. Soldovieri MV, Cilio MR, Miceli F, Bellini G, Miraglia del Giudice E, Castaldo P, et al. Atypical gating of M-type potassium channels conferred by mutations in uncharged residues in the S4 region of KCNQ2 causing benign familial neonatal convulsions. J Neurosci 2007;27(18):4919–4928.

    Article  PubMed  CAS  Google Scholar 

  33. Schwake M, Jentsch TJ, Friedrich T. A carboxy-terminal domain determines the subunit specificity of KCNQ K(+) channel assembly. EMBO Rep 2003;4(1):76–81.

    Article  PubMed  CAS  Google Scholar 

  34. Soldovieri MV, Castaldo P, Iodice L, Miceli F, Barrese V, Bellini G, et al. Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem 2006;281(1):418–428.

    Article  PubMed  CAS  Google Scholar 

  35. Saganich MJ, Machado E, Rudy B. Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain. J Neurosci 2001;21(13):4609–4624.

    PubMed  CAS  Google Scholar 

  36. Cooper EC, Aldape KD, Abosch A et al. Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci U S A 2000;97:4914–4919.

    Google Scholar 

  37. Devaux JJ, Kleopa KA, Cooper EC, Scherer SS. KCNQ2 is a nodal K+ channel. J Neurosci 2004;24(5):1236–1244.

    Article  PubMed  CAS  Google Scholar 

  38. Weber YG, Geiger J, Kampchen K, Landwehrmeyer B, Sommer C, Lerche H. Immunohistochemical analysis of KCNQ2 potassium channels in adult and developing mouse brain. Brain Res 2006;1077(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  39. Chung HJ, Jan YN, Jan LY. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci U S A 2006;103(23):8870–8875.

    Article  PubMed  CAS  Google Scholar 

  40. Peretz A, Sheinin A, Yue C, Degani-Katzav N, Gibor G, Nachman R, et al. Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol 2007;97(1):283–295.

    Article  PubMed  CAS  Google Scholar 

  41. Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 1980;283(5748):673–676.

    Article  PubMed  CAS  Google Scholar 

  42. Constanti A, Adams PR, Brown DA. Who do barium ions imitate acetylcholine?Brain Res 1981;206(1):244–250.

    Article  PubMed  CAS  Google Scholar 

  43. Brown DA, Gahwiler BH, Griffith WH, Halliwell JV. Membrane currents in hippocampal neurons. Prog Brain Res 1990;83:141–160.

    Article  PubMed  CAS  Google Scholar 

  44. Goh JW, Pennefather PS. Pharmacological and physiological properties of the after-hyperpolarization current of bullfrog ganglion neurones. J Physiol 1987;394:315–330.

    PubMed  CAS  Google Scholar 

  45. Castaldo P, del Giudice EM, Coppola G, Pascotto A, Annunziato L, Taglialatela M. Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels. J Neurosci 2002;22(2):RC199.

    PubMed  Google Scholar 

  46. Yue C, Yaari Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci 2004;24(19):4614–4624.

    Article  PubMed  CAS  Google Scholar 

  47. Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS. A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons. J Neurosci 2006;26(7):2053–2059.

    Article  PubMed  CAS  Google Scholar 

  48. Gamper N, Shapiro MS. Calmodulin Mediates Ca2+-dependent Modulation of M-type K+ Channels. J Gen Physiol 2003.

    Google Scholar 

  49. Li Y, Gamper N, Shapiro MS. Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent. J Neurosci 2004;24(22):5079–5090.

    Article  PubMed  CAS  Google Scholar 

  50. Gamper N, Li Y, Shapiro MS. Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 2005;16(8):3538–3551.

    Article  PubMed  CAS  Google Scholar 

  51. Wen H, Levitan IB. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci 2002;22(18):7991–8001.

    PubMed  CAS  Google Scholar 

  52. Yus-Najera E, Santana-Castro I, Villarroel A. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem 2002;277(32):28545–28553.

    Article  PubMed  CAS  Google Scholar 

  53. Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 2003;6(6):564–571.

    Article  PubMed  CAS  Google Scholar 

  54. Suh BC, Hille B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 2002;35(3):507–520.

    Article  PubMed  CAS  Google Scholar 

  55. Suh BC, Hille B. Electrostatic interaction of internal Mg2+ with membrane PIP2 Seen with KCNQ K+ channels. J Gen Physiol 2007;130(3):241–256.

    Article  PubMed  CAS  Google Scholar 

  56. Etxeberria A, Aivar P, Rodriguez-Alfaro JA, Alaimo A, Villace P, Gomez-Posada JC, et al. Calmodulin regulates the trafficking of KCNQ2 potassium channels. Faseb J 2008;22(4):1135–1143.

    Article  PubMed  CAS  Google Scholar 

  57. Richards MC, Heron SE, Spendlove HE, Scheffer IE, Grinton B, Berkovic SF, et al. Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet 2004;41(3):e35.

    Article  PubMed  CAS  Google Scholar 

  58. Watanabe H, Nagata E, Kosakai A, Nakamura M, Yokoyama M, Tanaka K, et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem 2000;75(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  59. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 2005;8(1):51–60.

    Article  PubMed  CAS  Google Scholar 

  60. Russell MW, Dick M, 2nd, Collins FS, Brody LC. KVLQT1 mutations in three families with familial or sporadic long QT syndrome. Hum Mol Genet 1996;5(9):1319–1324.

    Article  PubMed  CAS  Google Scholar 

  61. Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ. Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet 1997;6(11):1943–1949.

    Article  PubMed  CAS  Google Scholar 

  62. Yang Y, Beyer BJ, Otto JF, O'Brien TP, Letts VA, White HS, et al. Spontaneous deletion of epilepsy gene orthologs in a mutant mouse with a low electroconvulsive threshold. Hum Mol Genet 2003;12(9):1–10.

    Article  Google Scholar 

  63. Pereira S, Roll P, Krizova J, Genton P, Brazdil M, Kuba R, et al. Complete loss of the cytoplasmic carboxyl terminus of the KCNQ2 potassium channel: A novel mutation in a large Czech pedigree with benign neonatal convulsions or other epileptic phenotypes. Epilepsia 2004;45(4):384–390.

    Article  PubMed  CAS  Google Scholar 

  64. Otto JF, Yang Y, Frankel WN, Wilcox KS, White HS. Mice carrying the szt1 mutation exhibit increased seizure susceptibility and altered sensitivity to compounds acting at the m-channel. Epilepsia 2004;45(9):1009–1016.

    Article  PubMed  Google Scholar 

  65. Otto JF, Kimball MM, Wilcox KS. Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 2002;61(4):921–927.

    Article  PubMed  CAS  Google Scholar 

  66. Hetka R, Rundfeldt C, Heinemann U, Schmitz D. Retigabine strongly reduces repetitive firing in rat entorhinal cortex. Eur J Pharmacol 1999;386(2–3):165–171.

    Article  PubMed  CAS  Google Scholar 

  67. Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 2000;282(1–2):73–76.

    Article  PubMed  CAS  Google Scholar 

  68. Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol 2000;58(3):591–600.

    PubMed  CAS  Google Scholar 

  69. Singh NA, Otto JF, Dahle EJ, Pappas C, Leslie JD, Vilaythong A, et al. Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol 2008;586(14):3405–3423.

    Article  PubMed  CAS  Google Scholar 

  70. Ryan SG, Wiznitzer M, Hollman C, Torres MC, Szekeresova M, Schneider S. Benign familial neonatal convulsions: evidence for clinical and genetic heterogeneity. Ann Neurol 1991;29(5):469–473.

    Article  PubMed  CAS  Google Scholar 

  71. Ben-Ari Y, Holmes GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol 2006;5(12):1055–1063.

    Article  PubMed  Google Scholar 

  72. Blume WT. The progression of epilepsy. Epilepsia 2006;47(Suppl 1):71–78.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the NIH (RO1 NS-32666 to ML, RO1 NS-44210 to KSW), the W.M. Keck Foundation (to M.L.), and the Primary Children's Medical Center Foundation (KSW).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Singh, N.A., Otto, J.F., Leppert, M.F., White, H.S., Wilcox, K.S. (2009). Mouse Models of Benign Familial Neonatal Convulsions (BFNC): Mutations in KCNQ (Kv7) Genes. In: Baraban, S. (eds) Animal Models of Epilepsy. Neuromethods, vol 40. Humana Press. https://doi.org/10.1007/978-1-60327-263-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-263-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-262-9

  • Online ISBN: 978-1-60327-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics