Skip to main content

NMR Assignment Method for Amide Signals with Cell-Free Protein Synthesis System

  • Protocol
  • First Online:
Cell-Free Protein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 607))

Abstract

Nuclear magnetic resonance (NMR) methods are widely used to determine the three-dimensional structures of proteins, to estimate protein folding, and to discover high-affinity ligands for proteins. However, one of the problems to apply such NMR methods to proteins is that we should obtain mg quantities of 15N and/or 13C labeled pure proteins of interest.

Here, we describe the method to produce dual amino acid-selective 13C–15N labeled proteins for NMR study using the improved wheat germ cell-free system, which enables sequence-specific assignments of amide signals simply even for very large protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wüthrich, K. (2000). Protein recognition by NMR. Nat. Struct. Biol. 7, 188-189.

    Article  PubMed  Google Scholar 

  2. Yokoyama, S. et al. (2000). Structural genomics projects in Japan. Nat. Struct. Biol. 7 Suppl, 943-945.

    Google Scholar 

  3. Montelione, G.T., Zheng, D., Huang, Y.J., Gunsalus, K.C. and Szyperski, T. (2000). Pro­tein NMR spectroscopy in structural geno­mics. Nat. Struct. Biol. 7 Suppl, 982-985.

    Google Scholar 

  4. Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W. (1996). Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531-1534.

    Article  CAS  PubMed  Google Scholar 

  5. Madin, K., Sawasaki, T., Ogasawara, T. and Endo, Y. (2000). A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97, 559-564.

    Article  CAS  PubMed  Google Scholar 

  6. Sawasaki, T., Ogasawara, T., Morishita, R. and Endo, Y. (2002). A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. USA 99, 14652-14657.

    Article  CAS  PubMed  Google Scholar 

  7. Morita, E.H., Sawasaki, T., Tanaka, R., Endo, Y. and Kohno, T. (2003). A wheat germ cell-free system is a novel way to screen protein folding and function. Protein Sci. 12, 1216-1221.

    Article  CAS  PubMed  Google Scholar 

  8. Morita, E.H., Shimizu, M., Ogasawara, T., Endo, Y., Tanaka, R. and Kohno, T. (2004). A novel way of amino acid-specific assignment in 1H-15N HSQC spectra with a wheat germ cell-free protein synthesis system. J. Biomol. NMR 30, 37-45.

    Article  CAS  PubMed  Google Scholar 

  9. Kainosho, M. and Tsuji, T. (1982). Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21, 6273-6279.

    CAS  Google Scholar 

  10. Kainosho, M., Nagao, H., Imamura, Y., Uchida, K., Tomonaga, N., Nakamura, Y. and Tsuji, T. (1985). Structural studies of a protein using the assigned back-bone carbonyl carbon-13 NMR resonances. J. Mol. Struct. 126, 549-562.

    Article  CAS  Google Scholar 

  11. Kainosho, M., Nagao, H. and Tsuji, T. (1987). Local structural features around the C-terminal segment of Streptomyces subtilisin inhibitor studied by carbonyl carbon nuclear magnetic resonances three phenylalanyl residues. Biochemistry 26, 1068-1075.

    Article  CAS  PubMed  Google Scholar 

  12. Yabuki, T. et al. (1998). Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J. Biomol. NMR 11, 295-306.

    Article  CAS  PubMed  Google Scholar 

  13. Kato, K., Matsunaga, C., Nishimura, Y., Waelchli, M., Kainosho, M. and Arata, Y. (1989). Application of 13C nuclear magnetic resonance spectroscopy to molecular structural analyses of antibody molecules. J. Biochem. 105, 867-869.

    CAS  PubMed  Google Scholar 

  14. McIntosh, L.P. and Dahlquist, F.W. (1990). Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q. Rev. Biophys. 23, 1-38.

    Article  CAS  PubMed  Google Scholar 

  15. Sambrook, J. and Russell, D.W. (2001) Molecular Cloning, A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory Press. New York.

    Google Scholar 

  16. Kohno, T., Kusunoki, H., Sato, K. and Wakamatsu, K. (1998). A new general method for the biosynthesis of stable isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: an application to the production of mastoparan-X uniformly enriched with 15N and 15N/13C. J. Biomol. NMR 12, 109-121.

    Article  CAS  PubMed  Google Scholar 

  17. Schleucher, J., Schwendinger, M., Sattler, M., Schmidt, P., Schedletzky, O., Glaser, S.J., Sorensen, O.W. and Griesinger, C. (1994). A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301-306.

    Article  CAS  PubMed  Google Scholar 

  18. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995). 1H, 13C, 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135-140.

    Article  CAS  PubMed  Google Scholar 

  19. Ikura, M., Kay, L.E. and Bax, A. (1990). A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659-4667.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kohno, T. (2010). NMR Assignment Method for Amide Signals with Cell-Free Protein Synthesis System. In: Endo, Y., Takai, K., Ueda, T. (eds) Cell-Free Protein Production. Methods in Molecular Biology, vol 607. Humana Press. https://doi.org/10.1007/978-1-60327-331-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-331-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-330-5

  • Online ISBN: 978-1-60327-331-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics