Skip to main content

Cancer Genome Analysis Informatics

  • Protocol
  • First Online:
Genetic Variation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 628))

Abstract

The analysis of cancer genomes has benefited from the advances in technology that enable data to be generated on an unprecedented scale, describing a tumour genome’s sequence and composition at increasingly high resolution and reducing cost. This progress is likely to increase further over the coming years as next-generation sequencing approaches are applied to the study of cancer genomes, in tandem with large-scale efforts such as the Cancer Genome Atlas and recently announced International Cancer Genome Consortium efforts to complement those already established such as the Sanger Institute Cancer Genome Project. This presents challenges for the cancer researcher and the research community in general, in terms of analysing the data generated in one’s own projects and also in coordinating and interrogating data that are publicly available. This review aims to provide a brief overview of some of the main informatics resources currently available and their use, and some of the informatics approaches that may be applied in the study of cancer genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CRUK published statistics - http://publications.cancerresearchuk.org/WebRoot/crukstoredb/CRUK_PDFs/CSINC08.pdf

  2. World Health Organisation (WHO) cancer factsheet - http://www.who.int/mediacentre/factsheets/fs297/en/index.html

  3. Hanahan D, Weinberg RA. (2000) The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  4. Steele RJ, Thompson AM, Hall PA, Lane DP. (1998) The p53 tumour suppressor gene. British Journal of Surgery, 85, 1460–1467.

    Article  PubMed  CAS  Google Scholar 

  5. Miki Y, Swensen J, ShattuckEidens D, Futreal PA, Harshman K, Tavtigian S et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266, 66–71.

    Article  PubMed  CAS  Google Scholar 

  6. Druker BJ, Lydon NB. (2000) Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. Journal of Clinical Investigation, 105, 3–7.

    Article  PubMed  CAS  Google Scholar 

  7. Albanell J, Baselga J. (1999) The ErbB receptors as targets for breast cancer therapy. Journal of Mammary Gland Biology & Neoplasia, 4, 337–351.

    Article  CAS  Google Scholar 

  8. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002) Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.

    Article  PubMed  CAS  Google Scholar 

  9. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. (2006) The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.

    Article  PubMed  Google Scholar 

  10. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. (2007) Patterns of somatic mutation in human cancer genomes. Nature, 446, 153–158.

    Article  PubMed  CAS  Google Scholar 

  11. Tomlins SA, Rhodes DR, Perner S, Dhana-sekaran SM, Mehra R, Sun XW et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310, 644–648.

    Article  PubMed  CAS  Google Scholar 

  12. Khalique L, Ayhan A, Weale ME, Jacobs IJ, Ramus SJ, Gayther SA. (2007) Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. Journal of Pathology, 211, 286–295.

    Article  PubMed  CAS  Google Scholar 

  13. Tang X, Shigematsu H, Bekele BN, Roth JA, Minna JD, Hong WK et al. (2005) EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Research, 65, 7568–7572.

    PubMed  CAS  Google Scholar 

  14. Campbell PJ, et al. (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature Genetics, 40, 722–729.

    Article  PubMed  CAS  Google Scholar 

  15. http://www.sanger.ac.uk/genetics/CGP/

  16. http://cancergenome.nih.gov/index.asp

  17. http://www.icgc.org/

  18. Bardelli A, Parsons DW, Silliman N, Ptak J, Szabo S, Saha S et al. (2003) Mutational analysis of the tyrosine kinome in colorectal cancers. Science, 300, 949.

    Article  PubMed  CAS  Google Scholar 

  19. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature, 450, 893–898.

    Article  PubMed  CAS  Google Scholar 

  20. Mitelman Database of Chromosome Aberrations in Cancer (2008). Mitelman F, Johansson B, and Mertens F (Eds.), http://cgap.nci.nih.gov/Chromosomes/Mitelman

  21. Knutsen T, Gobu V, Knaus R, PadillaNash H, Augustus M, Strausberg RL et al. (2005) The interactive online SKY/M-FISH & CGH database and the Entrez cancer chromosomes search database: linkage of chromosomal aberrations with the genome sequence. Genes, Chromosomes & Cancer, 44, 52–64.

    Article  CAS  Google Scholar 

  22. Huret JL, Senon S, Bernheim A, Dessen P. (2004) An Atlas on genes and chromosomes in oncology and haematology. Cellular & Molecular Biology, 50, 805–807.

    CAS  Google Scholar 

  23. Baudis M, Cleary ML. (2001) Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics, 17, 1228–1229.

    Article  PubMed  CAS  Google Scholar 

  24. Kim DS, Huh JW, Kim HS. (2007) HYBRIDdb: a database of hybrid genes in the human genome. BMC Genomics, 8, 128.

    Article  PubMed  Google Scholar 

  25. Kim N, Kim P, Nam S, Shin S, Lee S. (2006) ChimerDB-a knowledgebase for fusion sequences. Nucleic Acids Research, 34, 21–4.

    Article  Google Scholar 

  26. Baross A, Delaney AD, Li HI, Nayar T, Flibotte S, Qian H et al. (2007) Assessment of algorithms for high throughput detection of genomic copy number variation in oligonucleotide microarray data. BMC Bioinformatics, 8, 368.

    Article  PubMed  Google Scholar 

  27. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 5, R80.

    Article  PubMed  Google Scholar 

  28. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. (2006) GenePattern 2.0. Nature Genetics, 38, 500–501.

    Article  PubMed  CAS  Google Scholar 

  29. Hupe P, Stransky N, Thiery JP, Radvanyi F, Barillot E. (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20, 3413–3422.

    Article  PubMed  CAS  Google Scholar 

  30. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D et al. (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 104, 20007–20012.

    Article  PubMed  CAS  Google Scholar 

  31. Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y et al. (2008) Ensembl 2008. Nucleic Acids Research, 36, 707–14.

    Article  Google Scholar 

  32. Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, Diekhans M et al. (2008) The UCSC Genome Browser Database: 2008 update. Nucleic Acids Research, 36, 773–9.

    Article  Google Scholar 

  33. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V et al. (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 36, 13–21.

    Article  Google Scholar 

  34. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436, 117–122.

    Article  PubMed  CAS  Google Scholar 

  35. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C et al. (2007) NCBI GEO: mining tens of millions of expression profiles-database and tools update. Nucleic Acids Research, 35, 760–5.

    Article  Google Scholar 

  36. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A et al. (2007) ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Research, 35, 745–50.

    Article  Google Scholar 

  37. Demeter J, Beauheim C, Gollub J, HernandezBoussard T, Jin H, Maier D et al. (2007) The Stanford Microarray Database: implementation of new analysis tools and open source release of software. Nucleic Acids Research, 35, 766–70.

    Article  Google Scholar 

  38. Chari R, Lockwood WW, Coe BP, Chu A, Macey D, Thomson A et al. (2006) SIGMA: a system for integrative genomic microarray analysis of cancer genomes. BMC Genomics, 7, 324.

    Article  PubMed  Google Scholar 

  39. Hupe P, La Rosa P, Liva S, Lair S, Servant N, Barillot E. (2007) ACTuDB, a new database for the integrated analysis of array-CGH and clinical data for tumors. Oncogene, 26, 6641–6652.

    Article  PubMed  CAS  Google Scholar 

  40. Scheinin I, Myllykangas S, Borze I, Bohling T, Knuutila S, Saharinen J. (2008) CanGEM: mining gene copy number changes in cancer. Nucleic Acids Research, 36, 830–835.

    Article  Google Scholar 

  41. Reyal F, Stransky N, BernardPierrot I, VincentSalomon A, de Rycke Y, Elvin P et al. (2005) Visualizing chromosomes as transcriptome correlation maps: evidence of chromosomal domains containing co-expressed genes--a study of 130 invasive ductal breast carcinomas. Cancer Research, 65, 1376–1383.

    Article  PubMed  CAS  Google Scholar 

  42. Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al. (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genetics, 40, 281–283.

    Article  PubMed  CAS  Google Scholar 

  43. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  44. Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A et al. (2005) Cosmic 2005. British Journal of Cancer, 94, 318–322.

    Article  Google Scholar 

  45. Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T. (2006) The UMD TP53 database and website: update and revisions. Human Mutation, 27, 14–20.

    Article  PubMed  CAS  Google Scholar 

  46. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Human Mutation, 28, 622–629.

    Article  PubMed  CAS  Google Scholar 

  47. Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD).

    Google Scholar 

  48. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H et al. (2007) Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene, 26, 7158–7162.

    Article  PubMed  CAS  Google Scholar 

  49. Ortutay C, Valiaho J, Stenberg K, Vihinen M. (2005) KinMutBase: a registry of disease-causing mutations in protein kinase domains. Human Mutation, 25, 435–442.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang J, Finney RP, Rowe W, Edmonson M, Yang SH, Dracheva T et al. (2007) Systematic analysis of genetic alterations in tumors using Cancer Genome WorkBench (CGWB). Genome Research, 17, 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  51. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. (2004) A census of human cancer genes. Nature Reviews Cancer, 4, 177–183.

    Article  PubMed  CAS  Google Scholar 

  52. Caporaso JG, Baumgartner WA, Jr., Randolph DA, Cohen KB, Hunter L. (2007) Mutation-Finder: a high-performance system for extracting point mutation mentions from text. Bio-informatics, 23, 1862–1865.

    Article  PubMed  CAS  Google Scholar 

  53. Emuss V, Garnett M, Mason C, Marais R. (2005) Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Research, 65, 9719–9726.

    Article  PubMed  CAS  Google Scholar 

  54. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell, 12, 115–130.

    Article  PubMed  CAS  Google Scholar 

  55. Perry GH, BenDor A, Tsalenko A, Sampas N, RodriguezRevenga L, Tran CW et al. (2008) The fine-scale and complex architecture of human copy-number variation. American Journal of Human Genetics, 82, 685–695.

    Article  PubMed  CAS  Google Scholar 

  56. ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447, 799–816.

    Article  PubMed  CAS  Google Scholar 

  57. Soussi T, Ishioka C, Claustres M, Beroud C. (2006) Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Naturev Reviews Cancer, 6, 83–90.

    Article  PubMed  CAS  Google Scholar 

  58. Torkamani A, Schork NJ. (2008) Prediction of cancer driver mutations in protein kinases. Cancer Research, 68, 1675–1682.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Pall Jonsson and Dr. Tim French for their helpful comments and suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian P. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barrett, I.P. (2010). Cancer Genome Analysis Informatics. In: Barnes, M., Breen, G. (eds) Genetic Variation. Methods in Molecular Biology, vol 628. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-367-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-367-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-366-4

  • Online ISBN: 978-1-60327-367-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics