Skip to main content

Quantitative Trait Locus Mapping to Identify Genes for Complex Traits in Mice

  • Protocol
Molecular Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markel P, Shu P, Ebeling C et al (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17:280–284

    Article  PubMed  CAS  Google Scholar 

  2. Smith JD, Bhasin JM, Baglione J et al (2006) Atherosclerosis susceptibility loci identified from a strain intercross of apolipoprotein E-deficient mice via a high-density genome scan. Arterioscler Thromb Vasc Biol 26:597–603

    Article  PubMed  CAS  Google Scholar 

  3. Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  4. Manly KF, Cudmore RH, Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  5. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  6. Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab Anim (NY) 30:44–52

    CAS  Google Scholar 

  7. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  8. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  9. Green EL (1966) in Biology of the Laboratory Mouse. McGraw-Hill, New York, N.Y.

    Google Scholar 

  10. Churchill GA, Airey DC, Allayee H et al (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: 1133–1137

    Article  PubMed  CAS  Google Scholar 

  11. Singer JB, Hill AE, Burrage LC et al (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    Article  PubMed  CAS  Google Scholar 

  12. Davis RC, Schadt EE, Smith D J et al (2005) A genome-wide set of congenic mouse strains derived from DBA/2J on a C57BL/6J background. Genomics 86:259–270

    Article  PubMed  CAS  Google Scholar 

  13. Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298:2345–2349

    Article  PubMed  CAS  Google Scholar 

  14. Abiola O, Angel JM, Avner P et al (2003) The nature and identification of quantitative trait loci: a community's view. Nat Rev Genet 4:911–916

    PubMed  Google Scholar 

  15. Nord AS, Chang PJ, Conklin BR et al (2006) The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res 34:D642–D648

    Article  PubMed  CAS  Google Scholar 

  16. Kissler S, Stern P, Takahashi K et al (2006) In vivo RNA interference demonstrates a role for Nrampl in modifying susceptibility to type 1 diabetes. Nat. Genet 38:479–483

    Article  PubMed  CAS  Google Scholar 

  17. Aitman TJ, Glazier AM, Wallace CA et al (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:76–83

    Article  PubMed  CAS  Google Scholar 

  18. Trogan E, Choudhury R P, Dansky HM et al (2002) Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apoli-poprotein E-deficient mice. Proc Natl Acad Sci U. S. A 99:2234–2239

    Article  PubMed  CAS  Google Scholar 

  19. Schadt EE, Monks SA, Drake TA et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  20. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755

    Article  PubMed  CAS  Google Scholar 

  21. Hubner N, Wallace CA, Zimdahl H et al (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–353

    Article  PubMed  CAS  Google Scholar 

  22. Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  PubMed  CAS  Google Scholar 

  23. Vitt U, Gietzen D, Stevens K et al (2004) Identification of candidate disease genes by EST alignments, synteny, and expression and verification of Ensembl genes on rat chromosome 1q43–54. Genome Res 14:640–50

    Article  PubMed  CAS  Google Scholar 

  24. Wang X, Ishimori N, Korstanje R et al (2005) Identifying novel genes for atherosclerosis through mouse-human comparative genetics. Am J Hum Genet 77:1–15

    Article  PubMed  CAS  Google Scholar 

  25. Stoll M, Kwitek-Black AE, Cowley AW, Jr et al (2000) New target regions for human hypertension via comparative genomics. Genome Res. 10:473–82

    Article  PubMed  CAS  Google Scholar 

  26. Wang X, Ria M, Kelmenson PM et al (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372

    Article  PubMed  CAS  Google Scholar 

  27. Mehrabian M, Allayee H, Wong J et al (2002) Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 91:120–126

    Article  PubMed  CAS  Google Scholar 

  28. Helgadottir A, Manolescu A, Thorleifsson G et al (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36:233–239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smith, J.D. (2008). Quantitative Trait Locus Mapping to Identify Genes for Complex Traits in Mice. In: Walker, J.M., Rapley, R. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-375-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-375-6_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-370-1

  • Online ISBN: 978-1-60327-375-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics