Skip to main content

Microchip Devices for Bioanalysis

  • Protocol
Molecular Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terry SC, Jerman JH, Angell JB (1979) A gas chromatograph air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26:1880–1886

    Article  Google Scholar 

  2. Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Sens Actuators. Design of an open-tubular column liquid chromatograph using silicon chip technology. B1:249

    CAS  Google Scholar 

  3. Zeng Y, Chen H, Pang D, Wang Z, Cheng J (2002) Microchip capillary electro-phoresis with electrochemical detection. Anal Chem 74:2441–2445

    Article  PubMed  CAS  Google Scholar 

  4. Jacobson SC, Moore AW, Ramsey JM (1995) Fused quartz substrates for microchip electrophoresis. Anal Chem 67:2059–2063

    Article  CAS  Google Scholar 

  5. Hatch A, Weigl BH, Zebert D, Yager P (1999) Microfluidic approaches to immu-noassays. Proc SPIE – Int Soc Opt Eng 3877:169–172

    CAS  Google Scholar 

  6. Chiem N, Harrison DJ (1997) Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal Chem 69:373–378

    Article  PubMed  CAS  Google Scholar 

  7. Oleschuk RD, Shultz-Lockyear LL, Ning Y, Harrison DJ (2000) Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal Chem 72:585–590

    Article  PubMed  CAS  Google Scholar 

  8. Choi JW, Ahn CH, Bhansali S, Henderson HT (2000) A new magnetic bead-based, filterless bioseparator with planar electromagnet surfaces for integrated biodetec-tion systems. Sens Actuators B68:34–39

    CAS  Google Scholar 

  9. Burns MA, Johnson BM, Brahmasandra SN et al (1998) An integrated nanoliter DNA analysis device. Science 280:1046–1048

    Article  Google Scholar 

  10. Kricka LJ, Wilding P (2003) Microchip PCR. Anal Bioanal Chem 277:820–825

    Article  Google Scholar 

  11. Li MW, Spence DM, Martin RS (2005) A microchip-based system for immobilizing PC 12 cells and amperometrically detecting catecholamines released after stimulation with calcium. Electroanalysis 17:1171–1180

    Article  CAS  Google Scholar 

  12. Woodruff GW (2004) Microfluidic channels in polymethylmethacrylate by optimizing aluminum adhesion. Proc Microelect Eng Conf 22:110–113

    Google Scholar 

  13. Srinivasan R (1982) Action of far ultraviolet-radiation on poly(ethylene-terphthalate) films – a method for controlled dry etching. Polymer 23:1863, 1864

    Article  CAS  Google Scholar 

  14. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897

    Article  PubMed  CAS  Google Scholar 

  15. Jacobson SC, Koutny LB, Hergenroder R, Moore AW, Ramsey JM (1994) Microchip capillary electrophoresis wit an integrated postcolumn reactor. Anal Chem 66:3472–3476

    Article  CAS  Google Scholar 

  16. Fluri K, Fitzpatrick G, Chiem N, Harrison DJ (1996) Integrated capillary electro-phoresis devices with an efficient postcolumn reactor in planar quartz and glass chip. Anal Chem 68:4285–4290

    Article  CAS  Google Scholar 

  17. Liu Y, Foote RS, Jacobson SC, Ramsey RS, Ramsey JM (2000) Electrophoretic separation of proteins on a microchip with noncovalent, postcolumn labeling. Anal Chem 72:4608–4613

    Article  PubMed  CAS  Google Scholar 

  18. Bousse L, Mouradian S, Minalla A, Yee H, Williams K, Dubrow R (2001) Protein sizing on a chip. Anal Chem 73:1207–1212

    Article  PubMed  CAS  Google Scholar 

  19. Xue Q, Wainright A, Gangakhedkar S, Gibbons I (2001) Multiplexed enzyme assays in capillary electrophoretic single-use microfluidic devices. Electrophoresis 22:4000–4007

    Article  PubMed  CAS  Google Scholar 

  20. Zugal SA, Burke BJ, Regnier FE, Lytle FE (2000) Electrophoretically mediated microanalysis of leucine aminopeptidase using two-photon excited fluorescence detection on a microchip. Anal Chem 72:5731–5735

    Article  Google Scholar 

  21. Abad-Villar EM, Tanyanyiwa J, Fernandez-Abedul MT, Costa-Gancia A, Hauser PC (2004) Detection of human immunoglubulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements. Anal Chem 76:1282–1288

    Article  PubMed  CAS  Google Scholar 

  22. Cheng SB, Skinner CD, Taylor J, Attiya S, Lee WE, Picelli G, Harrison DJ (2001) Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassays. Anal Chem 73:1472–1479

    Article  PubMed  CAS  Google Scholar 

  23. Chiem N, Harrison DJ (1997) Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal Chem 69:373–378

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Chatrathi MP, Tian B, Polsky R (2000) Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetomi-nophen. Anal Chem 72:2514–2518

    Article  PubMed  CAS  Google Scholar 

  25. Garcia CD, Henry CS (2003) Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. Anal Chem 75:4778–4783

    Article  PubMed  CAS  Google Scholar 

  26. Wicks DA, Li PCH (2004) Separation of fluorescent derivatives of hydroxyl-containing small molecules on a microfluidic chip. Anal Chim Acta 507:107–114

    Article  CAS  Google Scholar 

  27. Wooley AT, Lao K, Lazer AN, Mathies RA (1998) Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 70:684–688

    Article  Google Scholar 

  28. Lapos JA, Manica DP, Ewing AG (2002) Dual fluorescence and electrochemical detection on an electrophoresis microchip. Anal Chem 74:3348–3353

    Article  PubMed  CAS  Google Scholar 

  29. Gawron AJ, Martin RS, Lunte SM (2001) Fabrication and evaluation of a carbon-based dual electrode detector for poly(dimethylsiloxane) electrophoresis chips. Electrophoresis 22:242–248

    Article  PubMed  CAS  Google Scholar 

  30. Jacobson SC, Ramsey JM (1996) Integrated microdevice for DNA restriction fragment analysis. Anal Chem 68:720–723

    Article  CAS  Google Scholar 

  31. Wooley AT, Mathies RA (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci 91:11,348–11,352

    Article  Google Scholar 

  32. Xu F, Jabasini M, Baba Y (2002) DNA separation by microchip electrophoresis using low-viscosity hydroxypropylmethylcellulose-50 solutions enhanced by poly-hydroxy compounds. Electrophoresis 23:3608–3614

    Article  PubMed  CAS  Google Scholar 

  33. Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplication by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez I, Lesaicherre M, Tie Y (2003) Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis. Electrophoresis 24:172–178

    Article  PubMed  CAS  Google Scholar 

  35. Park N, Kim S, Hahn JH (2003) Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal Chem 75:6029–6033

    Article  PubMed  CAS  Google Scholar 

  36. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75:4671–4675

    Article  Google Scholar 

  37. Schuster TG, Cho BS, Keller LM, Takayama S, Smith GD (2003) Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online 7:75–81

    Article  PubMed  Google Scholar 

  38. Zini A, Finelli A, Phang D (2000) Influence of semen processing technique on human sperm DNA integrity. Urology 6:1081–1084

    Article  Google Scholar 

  39. Peterson ETK, Papautsky I (2006) Microtextured polydimethylsiloxane substrates for culturing mesenchymal stem cells. In: Shelley D. Minteer (ed) Methods in molecular biology, Humana Press in Totowa, New Jersey vol. 321, pp 179–197

    Google Scholar 

  40. Mata A, Boehm C, Fleischman AJJ, Muschler G, Roy S (2002) Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel microtextures. Biomed Microdevices 4:267–275

    Article  PubMed  CAS  Google Scholar 

  41. Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175

    Article  CAS  Google Scholar 

  42. Gray BL, Lieu DK, Collins SD, Smith RL, Barakat AI (2002) Microchannel platform for the study of endothelial cell shape and function. Biomed Microdevices 4:9–16

    Article  Google Scholar 

  43. Spence DM, Torrence NJ, Kovarik ML, Martin RS (2004) Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 129:995–1000

    Article  PubMed  CAS  Google Scholar 

  44. Kaji H, Nishizawa M, Matsue T (2003) Localized chemical stimulation to micro-patterned cells using multiple laminar fluid flows. Labchip 3:208–211

    CAS  Google Scholar 

  45. Russo AP, Apoga D, Dowell N, Shain W, Turner AMP, Craighead HG, Hoch HC, Turner JN (2002) Microfabricated plastic devices from silicon using soft intermediates. Biomed Microdevices 4:277–283

    Article  CAS  Google Scholar 

  46. Chang WJ, Akin D, Sedlak M, Ladisch MR, Bashir R (2003) Poly(dimethylsiloxane and silicon hybrid biochip for bacterial culture. Biomed Microdevices 5:281–290

    Article  CAS  Google Scholar 

  47. Thiebaud P, Lauer L, Knoll W, Offenhausser A (2002) PDMS device for patterned application of microfluids to neuronal cells arranged by microcontact printing. Biosensors and Bioelectronics 17:87–93

    Article  PubMed  CAS  Google Scholar 

  48. Li X, Li PCH (2006) Contraction study of a single cardiac muscle cell in a micro-fluidic chip. In: Shelley D. Minteer (ed) Methods in molecular biology, Humana Press in Totowa, New Jersey vol. 321, pp 199–225

    Google Scholar 

  49. Yang M, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991–4001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kinsella, A.C., Minteer, S.D. (2008). Microchip Devices for Bioanalysis. In: Walker, J.M., Rapley, R. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-375-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-375-6_48

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-370-1

  • Online ISBN: 978-1-60327-375-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics