Skip to main content

The State-of-the-Art of Chromatin Immunoprecipitation

  • Protocol
  • First Online:
Chromatin Immunoprecipitation Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 567))

Abstract

The biological significance of interactions of nuclear proteins with DNA in the context of gene expression, cell differentiation, or disease has immensely been enhanced by the advent of chromatin immunoprecipitation (ChIP). ChIP is a technique whereby a protein of interest is selectively immunoprecipitated from a chromatin preparation to determine the DNA sequences associated with it. ChIP has been widely used to map the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin-modifying enzymes on the genome or on a given locus. In spite of its power, ChIP has for a long time remained a cumbersome procedure requiring large number of cells. These limitations have sparked the development of modifications to shorten the procedure, simplify the sample handling, and make the ChIP amenable to small number of cells. In addition, the combination of ChIP with DNA microarray, paired-end ditag, and high-throughput sequencing technologies has in recent years enabled the profiling of histone modifications and transcription factor occupancy on a genome-wide scale. This review highlights the variations on the theme of the ChIP assay, the various detection methods applied downstream of ChIP, and examples of their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antequera, F. (2003) Structure, function and evolution of CpG island promoters. Cell Mol. Life Sci. 60, 1647–1658.

    Article  PubMed  CAS  Google Scholar 

  2. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  3. Mito, Y., Henikoff, J. G. and Henikoff, S. (2007) Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411.

    Article  PubMed  CAS  Google Scholar 

  4. Mito, Y., Henikoff, J. G. and Henikoff, S. (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090–1097.

    Article  PubMed  CAS  Google Scholar 

  5. Viens, A., Mechold, U., Brouillard, F., Gilbert, C., Leclerc, P. and Ogryzko, V. (2006) Analysis of human histone H2AZ deposition in vivo argues against its direct role in epigenetic templating mechanisms. Mol. Cell Biol. 26, 5325–5335.

    Article  PubMed  CAS  Google Scholar 

  6. Li, B., Pattenden, S. G., Lee, D., Gutierrez, J., Chen, J., Seidel, C., Gerton, J. and Workman, J. L. (2005) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc. Natl. Acad. Sci. U.S.A. 102, 18385–18390.

    Article  PubMed  CAS  Google Scholar 

  7. Li, A., Eirin-Lopez, J. M. and Ausio, J. (2005) H2AX: tailoring histone H2A for chromatin-dependent genomic integrity. Biochem. Cell Biol. 83, 505–515.

    Article  PubMed  CAS  Google Scholar 

  8. Hoffman, A. R. and Hu, J. F. (2006) Directing DNA methylation to inhibit gene expression. Cell Mol. Neurobiol. 26, 425–438.

    Article  PubMed  CAS  Google Scholar 

  9. Klose, R. J. and Bird, A. P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97.

    Article  PubMed  CAS  Google Scholar 

  10. Morgan, H. D., Santos, F., Green, K., Dean, W. and Reik, W. (2005) Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58.

    Article  PubMed  CAS  Google Scholar 

  11. Young, L. E. and Beaujean, N. (2004) DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim. Reprod. Sci. 82, 61–78.

    Article  PubMed  CAS  Google Scholar 

  12. Razin, A. and Shemer, R. (1995) DNA methylation in early development. Hum. Mol. Genet. 4, 1751–1755.

    PubMed  CAS  Google Scholar 

  13. Hellman, A. and Chess, A. (2007) Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143.

    Article  PubMed  CAS  Google Scholar 

  14. Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M. and Bartolomei, M. S. (1995) A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9, 407–413.

    Article  PubMed  CAS  Google Scholar 

  15. Reik, W., Collick, A., Norris, M. L., Barton, S. C. and Surani, M. A. (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248–251.

    Article  PubMed  CAS  Google Scholar 

  16. Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M. and Schubeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466.

    Article  PubMed  CAS  Google Scholar 

  17. Fouse, S. D., Shen, Y., Pellegrini, M., Cole, S., Meissner, A., Van, N. L., Jaenisch, R. and Fan, G. (2008) Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 160–169.

    Article  PubMed  CAS  Google Scholar 

  18. Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  19. Mellor, J. (2006) It takes a PHD to read the histone code. Cell 126, 22–24.

    Article  PubMed  CAS  Google Scholar 

  20. Cosgrove, M. S. and Wolberger, C. (2005) How does the histone code work? Biochem. Cell Biol. 83, 468–476.

    Article  PubMed  CAS  Google Scholar 

  21. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120.

    Article  PubMed  CAS  Google Scholar 

  22. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R. S. and Zhang, Y. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  23. Cao, R. and Zhang, Y. (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164.

    Article  PubMed  CAS  Google Scholar 

  24. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini, D. E. and Helin, K. (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071.

    Article  PubMed  CAS  Google Scholar 

  25. Lachner, M. and Jenuwein, T. (2002) The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298.

    Article  PubMed  CAS  Google Scholar 

  26. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M. and Fisher, A. G. (2006) Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538.

    Article  PubMed  CAS  Google Scholar 

  27. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L. and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  28. Kingston, R. E. and Narlikar, G. J. (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352.

    Article  PubMed  CAS  Google Scholar 

  29. Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., III and Grant, P. A. (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438.

    Article  PubMed  CAS  Google Scholar 

  30. Struhl, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606.

    Article  PubMed  CAS  Google Scholar 

  31. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., Schreiber, S. L., Mellor, J. and Kouzarides, T. (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411.

    Article  PubMed  CAS  Google Scholar 

  32. Schubeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., Gottschling, D. E., O’Neill, L. P., Turner, B. M., Delrow, J., Bell, S. P. and Groudine, M. (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271.

    Article  PubMed  Google Scholar 

  33. Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., Orlov, Y. L., Sung, W. K., Shahab, A., Kuznetsov, V. A., Bourque, G., Oh, S., Ruan, Y., Ng, H. H. and Wei, C. L. (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298.

    Article  PubMed  CAS  Google Scholar 

  34. Ruthenburg, A. J., Allis, C. D. and Wysocka, J. (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30.

    Article  PubMed  CAS  Google Scholar 

  35. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S. and Bernstein, B. E. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  36. O’Neill, L. P. and Turner, B. M. (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14, 3946–3957.

    PubMed  Google Scholar 

  37. O’Neill, L. P. and Turner, B. M. (1996) Immunoprecipitation of chromatin. Methods Enzymol. 274, 189–197.

    Article  PubMed  Google Scholar 

  38. Zeng, P. Y., Vakoc, C. R., Chen, Z. C., Blobel, G. A. and Berger, S. L. (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41, 694, 696, 698.

    Article  PubMed  CAS  Google Scholar 

  39. O’Neill, L. P., Vermilyea, M. D. and Turner, B. M. (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet. 38, 835–841.

    Article  PubMed  CAS  Google Scholar 

  40. Hanlon, S. E. and Lieb, J. D. (2004) Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr. Opin. Genet. Dev. 14, 697–705.

    Article  PubMed  CAS  Google Scholar 

  41. Sikder, D. and Kodadek, T. (2005) Genomic studies of transcription factor–DNA interactions. Curr. Opin. Chem. Biol. 9, 38–45.

    Article  PubMed  CAS  Google Scholar 

  42. Lee, T. I., Johnstone, S. E. and Young, R. A. (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1, 729–748.

    Article  PubMed  CAS  Google Scholar 

  43. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B. and Ng, H. H. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.

    Article  PubMed  CAS  Google Scholar 

  44. Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., Shahab, A., Yong, H. C., Fu, Y., Weng, Z., Liu, J., Zhao, X. D., Chew, J. L., Lee, Y. L., Kuznetsov, V. A., Sung, W. K., Miller, L. D., Lim, B., Liu, E. T., Yu, Q., Ng, H. H. and Ruan, Y. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219.

    Article  PubMed  CAS  Google Scholar 

  45. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  46. Kuo, M. H. and Allis, C. D. (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433.

    Article  PubMed  CAS  Google Scholar 

  47. Solomon, M. J., Larsen, P. L. and Varshavsky, A. (1988) Mapping protein–DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947.

    Article  PubMed  CAS  Google Scholar 

  48. Dedon, P. C., Soults, J. A., Allis, C. D. and Gorovsky, M. A. (1991) Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Mol. Cell Biol. 11, 1729–1733.

    PubMed  CAS  Google Scholar 

  49. Madisen, L., Krumm, A., Hebbes, T. R. and Groudine, M. (1998) The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Mol. Cell Biol. 18, 6281–6292.

    PubMed  CAS  Google Scholar 

  50. Hebbes, T. R., Clayton, A. L., Thorne, A. W. and Crane-Robinson, C. (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823–1830.

    PubMed  CAS  Google Scholar 

  51. Hebbes, T. R., Thorne, A. W., Clayton, A. L. and Crane-Robinson, C. (1992) Histone acetylation and globin gene switching. Nucleic Acids Res. 20, 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  52. Hebbes, T. R., Thorne, A. W. and Crane-Robinson, C. (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402.

    PubMed  CAS  Google Scholar 

  53. Spencer, V. A., Sun, J. M., Li, L. and Davie, J. R. (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67–75.

    Article  PubMed  CAS  Google Scholar 

  54. Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R. and Farnham, P. J. (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43, 791–797.

    Article  PubMed  CAS  Google Scholar 

  55. Attema, J. L., Papathanasiou, P., Forsberg, E. C., Xu, J., Smale, S. T. and Weissman, I. L. (2007) Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc. Natl. Acad. Sci. U.S.A. 104, 12371–12376.

    Article  PubMed  CAS  Google Scholar 

  56. Dahl, J. A. and Collas, P. (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  57. Dahl, J. A. and Collas, P. (2008) MicroChIP – A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res. 36, e15.

    Article  PubMed  CAS  Google Scholar 

  58. Dahl, J. A. and Collas, P. (2008) A rapid micro chromatin immunoprecipitation assay (μChIP). Nat. Protoc. 3, 1032–1045.

    Article  PubMed  CAS  Google Scholar 

  59. Nelson, J. D., Denisenko, O. and Bomsztyk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179–185.

    Article  PubMed  CAS  Google Scholar 

  60. Nelson, J. D., Denisenko, O., Sova, P. and Bomsztyk, K. (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 34, e2.

    Article  PubMed  CAS  Google Scholar 

  61. Kohzaki, H. and Murakami, Y. (2007) Faster and easier chromatin immunoprecipitation assay with high sensitivity. Proteomics 7, 10–14.

    Article  PubMed  CAS  Google Scholar 

  62. Flanagin, S., Nelson, J. D., Castner, D. G., Denisenko, O. and Bomsztyk, K. (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res. 36, e17.

    Article  PubMed  CAS  Google Scholar 

  63. Peluso, P., Wilson, D. S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., Heidecker, B., Poindexter, K., Tolani, N., Phelan, M., Witte, K., Jung, L. S., Wagner, P. and Nock, S. (2003) Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312, 113–124.

    Article  PubMed  CAS  Google Scholar 

  64. Brand, M., Rampalli, S., Chaturvedi, C. P. and Dilworth, F. J. (2008) Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography. Nat. Protoc. 3, 398–409.

    Article  PubMed  CAS  Google Scholar 

  65. Das, P. M., Ramachandran, K., vanWert, J. and Singal, R. (2004) Chromatin immunoprecipitation assay. Biotechniques 37, 961–969.

    PubMed  CAS  Google Scholar 

  66. Szekvolgyi, L., Balint, B. L., Imre, L., Goda, K., Szabo, M., Nagy, L. and Szabo, G. (2006) Chip-on-beads: flow-cytometric evaluation of chromatin immunoprecipitation. Cytometry 69, 1086–1091.

    Article  PubMed  Google Scholar 

  67. Roh, T. Y., Cuddapah, S., Cui, K. and Zhao, K. (2006) The genomic landscape of histone modifications in human T cells. Proc. Natl. Acad. Sci. U.S.A. 103, 15782–15787.

    Article  PubMed  CAS  Google Scholar 

  68. Chaya, D., Hayamizu, T., Bustin, M. and Zaret, K. S. (2001) Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. J. Biol. Chem. 276, 44385–44389.

    Article  PubMed  CAS  Google Scholar 

  69. Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M. and Gannon, F. (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763.

    Article  PubMed  CAS  Google Scholar 

  70. Wilkinson, D. S., Tsai, W. W., Schumacher, M. A. and Barton, M. C. (2008) Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-beta-mediated transcription repression. Mol. Cell Biol. 28, 1988–1998.

    Article  PubMed  CAS  Google Scholar 

  71. Jalvy, S., Renault, M. A., Lam Shang, L. L., Belloc, I., Reynaud, A., Gadeau, A. P. and Desgranges, C. (2007) CREB mediates UTP-directed arterial smooth muscle cell migration and expression of the chemotactic protein osteopontin via its interaction with activator protein-1 sites. Circ. Res. 100, 1292–1299.

    Article  PubMed  CAS  Google Scholar 

  72. Brunelli, L., Cieslik, K. A., Alcorn, J. L., Vatta, M. and Baldini, A. (2007) Peroxisome proliferator-activated receptor-delta upregulates 14-3-3 epsilon in human endothelial cells via CCAAT/enhancer binding protein-beta. Circ. Res. 100, e59–e71.

    Article  PubMed  CAS  Google Scholar 

  73. Kobrossy, L., Rastegar, M. and Featherstone, M. (2006) Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J. Biol. Chem. 281, 25926–25939.

    Article  PubMed  CAS  Google Scholar 

  74. Cui, R., Nguyen, T. T., Taube, J. H., Stratton, S. A., Feuerman, M. H. and Barton, M. C. (2005) Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. J. Biol. Chem. 280, 39152–39160.

    Article  PubMed  CAS  Google Scholar 

  75. Geisberg, J. V. and Struhl, K. (2004) Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Res. 32, e151.

    Article  PubMed  Google Scholar 

  76. Chaya, D. and Zaret, K. S. (2004) Sequential chromatin immunoprecipitation from animal tissues. Methods Enzymol. 376, 361–372.

    Article  PubMed  CAS  Google Scholar 

  77. Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M. and Brown, P. O. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538.

    Article  PubMed  CAS  Google Scholar 

  78. Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L., Wilson, C. J., Bell, S. P. and Young, R. A. (2000) Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309.

    Article  PubMed  CAS  Google Scholar 

  79. Clark, D. J. and Shen, C. H. (2006) Mapping histone modifications by nucleosome immunoprecipitation. Methods Enzymol. 410, 416–430.

    Article  PubMed  CAS  Google Scholar 

  80. Loden, M. and van Steensel, B. (2005) Whole-genome views of chromatin structure. Chromosome. Res. 13, 289–298.

    Article  PubMed  CAS  Google Scholar 

  81. Dang, C. V., O’Donnell, K. A., Zeller, K. I., Nguyen, T., Osthus, R. C. and Li, F. (2006) The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264.

    Article  PubMed  CAS  Google Scholar 

  82. Lee, L. A. and Dang, C. V. (2006) Myc target transcriptomes. Curr. Top. Microbiol. Immunol. 302, 145–167.

    Article  PubMed  CAS  Google Scholar 

  83. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R. and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  84. Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., Bell, G. W., Otte, A. P., Vidal, M., Gifford, D. K., Young, R. A. and Jaenisch, R. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.

    Article  PubMed  CAS  Google Scholar 

  85. Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., Chevalier, B., Johnstone, S. E., Cole, M. F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H. L., Zucker, J. P., Yuan, B., Bell, G. W., Herbolsheimer, E., Hannett, N. M., Sun, K., Odom, D. T., Otte, A. P., Volkert, T. L., Bartel, D. P., Melton, D. A., Gifford, D. K., Jaenisch, R. and Young, R. A. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.

    Article  PubMed  CAS  Google Scholar 

  86. Bulyk, M. L. (2006) DNA microarray technologies for measuring protein–DNA interactions. Curr. Opin. Biotechnol. 17, 422–430.

    Article  PubMed  CAS  Google Scholar 

  87. Hudson, M. E. and Snyder, M. (2006) High-throughput methods of regulatory element discovery. Biotechniques 41, 673, 675, 677.

    Article  PubMed  CAS  Google Scholar 

  88. Elnitski, L., Jin, V. X., Farnham, P. J. and Jones, S. J. (2006) Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res. 16, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  89. Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q. and Farnham, P. J. (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell Biol. 21, 6820–6832.

    Article  PubMed  CAS  Google Scholar 

  90. Hug, B. A., Ahmed, N., Robbins, J. A. and Lazar, M. A. (2004) A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. J. Biol. Chem. 279, 825–830.

    Article  PubMed  CAS  Google Scholar 

  91. Barski, A. and Frenkel, B. (2004) ChIP Display: novel method for identification of genomic targets of transcription factors. Nucleic Acids Res. 32, e104.

    Article  PubMed  CAS  Google Scholar 

  92. Ng, P., Wei, C. L., Sung, W. K., Chiu, K. P., Lipovich, L., Ang, C. C., Gupta, S., Shahab, A., Ridwan, A., Wong, C. H., Liu, E. T. and Ruan, Y. (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods 2, 105–111.

    Article  PubMed  CAS  Google Scholar 

  93. Ng, P., Tan, J. J., Ooi, H. S., Lee, Y. L., Chiu, K. P., Fullwood, M. J., Srinivasan, K. G., Perbost, C., Du, L., Sung, W. K., Wei, C. L. and Ruan, Y. (2006) Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res. 34, e84.

    Article  PubMed  CAS  Google Scholar 

  94. Kwon, Y. S., Garcia-Bassets, I., Hutt, K. R., Cheng, C. S., Jin, M., Liu, D., Benner, C., Wang, D., Ye, Z., Bibikova, M., Fan, J. B., Duan, L., Glass, C. K., Rosenfeld, M. G. and Fu, X. D. (2007) Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proc. Natl. Acad. Sci. U.S.A. 104, 4852–4857.

    Article  PubMed  CAS  Google Scholar 

  95. Garcia-Bassets, I., Kwon, Y. S., Telese, F., Prefontaine, G. G., Hutt, K. R., Cheng, C. S., Ju, B. G., Ohgi, K. A., Wang, J., Escoubet-Lozach, L., Rose, D. W., Glass, C. K., Fu, X. D. and Rosenfeld, M. G. (2007) Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128, 505–518.

    Article  PubMed  CAS  Google Scholar 

  96. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M. and Jones, S. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657.

    Article  PubMed  CAS  Google Scholar 

  97. Bock, C. and Lengauer, T. (2008) Computational epigenetics. Bioinformatics 24, 1–10.

    Article  PubMed  CAS  Google Scholar 

  98. Ji, H., Vokes, S. A. and Wong, W. H. (2006) A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res. 34, e146.

    Article  PubMed  CAS  Google Scholar 

  99. Matarazzo, M. R., Lembo, F., Angrisano, T., Ballestar, E., Ferraro, M., Pero, R., De Bonis, M. L., Bruni, C. B., Esteller, M., D’Esposito, M. and Chiariotti, L. (2004) In vivo analysis of DNA methylation patterns recognized by specific proteins: coupling CHIP and bisulfite analysis. Biotechniques 37, 666–669.

    PubMed  CAS  Google Scholar 

  100. Orian, A. (2006) Chromatin profiling, DamID and the emerging landscape of gene expression. Curr. Opin. Genet. Dev. 16, 157–164.

    Article  PubMed  CAS  Google Scholar 

  101. van Steensel, B., Delrow, J. and Henikoff, S. (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat. Genet. 27, 304–308.

    Article  PubMed  CAS  Google Scholar 

  102. Orian, A., van Steensel, B., Delrow, J., Bussemaker, H. J., Li, L., Sawado, T., Williams, E., Loo, L. W., Cowley, S. M., Yost, C., Pierce, S., Edgar, B. A., Parkhurst, S. M. and Eisenman, R. N. (2003) Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114.

    Article  PubMed  CAS  Google Scholar 

  103. Tompa, R., McCallum, C. M., Delrow, J., Henikoff, J. G., van Steensel, B. and Henikoff, S. (2002) Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr. Biol. 12, 65–68.

    Article  PubMed  CAS  Google Scholar 

  104. de Wit, E., Greil, F. and van Steensel, B. (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265–1273.

    Article  PubMed  CAS  Google Scholar 

  105. van Steensel, B. (2005) Mapping of genetic and epigenetic regulatory networks using microarrays. Nat. Genet. 37, S18–S24.

    Article  PubMed  CAS  Google Scholar 

  106. Vogel, M. J., Guelen, L., de Wit, E., Peric-Hupkes, D., Loden, M., Talhout, W., Feenstra, M., Abbas, B., Classen, A. K. and van Steensel, B. (2006) Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16, 1493–1504.

    Article  PubMed  CAS  Google Scholar 

  107. Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., Eussen, B. H., de Klein, A., Wessels, L., de Latt, W. and van Steensel, B. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951.

    Article  PubMed  CAS  Google Scholar 

  108. Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R. A., Niveleau, A., Cedar, H. and Simon, I. (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 38, 149–153.

    Article  PubMed  CAS  Google Scholar 

  109. Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L. and Schubeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862.

    Article  PubMed  CAS  Google Scholar 

  110. Wilson, I. M., Davies, J. J., Weber, M., Brown, C. J., Alvarez, C. E., Macaulay, C., Schubeler, D. and Lam, W. L. (2006) Epigenomics: mapping the methylome. Cell Cycle 5, 155–158.

    Article  PubMed  CAS  Google Scholar 

  111. Taylor, K. H., Kramer, R. S., Davis, J. W., Guo, J., Duff, D. J., Xu, D., Caldwell, C. W. and Shi, H. (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67, 8511–8518.

    Article  PubMed  CAS  Google Scholar 

  112. Yazaki, J., Gregory, B. D. and Ecker, J. R. (2007) Mapping the genome landscape using tiling array technology. Curr. Opin. Plant Biol. 10, 534–542.

    Article  PubMed  CAS  Google Scholar 

  113. Zilberman, D. and Henikoff, S. (2007) Genome-wide analysis of DNA methylation patterns. Development 134, 3959–3965.

    Article  PubMed  CAS  Google Scholar 

  114. Jacinto, F. V., Ballestar, E. and Esteller, M. (2008) Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 44, 35, 37, 39.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by grants from the Research Council of Norway and from the Norwegian Cancer Society. Thomas Küntziger is thanked for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Collas, P. (2009). The State-of-the-Art of Chromatin Immunoprecipitation. In: Collas, P. (eds) Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, vol 567. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-414-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-414-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-413-5

  • Online ISBN: 978-1-60327-414-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics