Skip to main content

Electrotaxis and Wound Healing: Experimental Methods to Study Electric Fields as a Directional Signal for Cell Migration

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

Electric fields were measured at human skin wounds over one and half centuries ago. Modern techniques have verified and greatly extended our understanding of the existence of endogenous wound electric fields. In virtually all wounds studied, disruption of an epithelial layer instantaneously generates endogenous electric fields. As electric fields have the intrinsic property of being vectorial, it has long been proposed that these fields may serve as a directional signal guiding cell migration in wound healing. We have established several experimental systems to study the guidance effects and mechanisms of electric fields on cell migration. Most types of cells migrate directionally in a small electric field, a phenomenon called galvanotaxis/electrotaxis. Remarkably, electric fields of strength equal to those detected at in vivo wounds direct cell migration and override some other well-accepted coexistent guidance cues such as contact inhibition. The naturally occurring endogenous electric fields therefore may be an important signaling mechanism that regulates directional cell movement in vivo. Applied electric fields may have a potential clinical role in guiding cell migration in wound healing. The magnitude and direction of the electric field can be more precisely and quickly changed than most other guidance cues such as chemical cues. Application of electric fields thus offers a robust experimental system for study of directional cell migration with extensive flexibility. We present a brief review of the background and describe the experimental system for studying electrotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du Bois-Reymond, E. (1843) Vorläufiger Abriss einer Untersuchung uber den sogenannten Froschstrom und die electomotorischen Fische. Ann. Phy. U. Chem. 58, 1–30.

    Article  Google Scholar 

  2. Du Bois-Reymond, E. (1860) Untersuchungen uber thierische Elektricitat, Zweiter Band, Zweite Abtheilung (Erste Lieferung). Georg Reimer, Berlin.

    Google Scholar 

  3. Borgens, R. B., Vanable, J. W., Jr. and Jaffe, L. F. (1977) Bioelectricity and regeneration: large currents leave the stumps of regenerating newt limbs. Proc. Natl. Acad. Sci. USA 74, 4528–4532.

    Article  PubMed  CAS  Google Scholar 

  4. Barker, A. T., Jaffe, L. F. and Vanable, J. W., Jr. (1982) The glabrous epidermis of cavies contains a powerful battery. Am. J. Physiol. 242, R358–366.

    PubMed  CAS  Google Scholar 

  5. Jaffe, L. F. and Vanable, J. W., Jr. (1984) Electric fields and wound healing. Clin. Dermatol. 2, 34–44.

    Article  PubMed  CAS  Google Scholar 

  6. Reid, B., Nuccitelli, R. and Zhao, M. (2007) Non-invasive measurement of bioelectric currents with a vibrating probe. Nat. Protoc. 2, 661–669.

    Article  PubMed  CAS  Google Scholar 

  7. Reid, B., Song, B., McCaig, C. D. and Zhao, M. (2005) Wound healing in rat cornea: the role of electric currents. FASEB J. 19, 379–386.

    Article  PubMed  CAS  Google Scholar 

  8. Nuccitelli, R. (2003) Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat. Prot. Dosimetry 106, 375–383.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, E., Reid, B., Lois, N., Forrester, J. V., McCaig, C. D. and Zhao, M. (2005) Electrical inhibition of lens epithelial cell proliferation: an additional factor in secondary cataract? FASEB J. 19, 842–844.

    Article  PubMed  CAS  Google Scholar 

  10. Mukerjee, E. V., Isseroff, R. R., Nuccitelli, R., Collins, S. D. and Smith, R. L. (2006) Microneedle array for measuring wound generated electric fields. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 4326–4328.

    PubMed  CAS  Google Scholar 

  11. Nuccitelli, R., Nuccitelli, P., Ramlatchan, S., Sanger, R. and Smith, P. J. (2008) Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen. 16, 432–441.

    Article  PubMed  Google Scholar 

  12. Chiang, M. C., Cragoe, E. J., Jr. and Vanable, J. W., Jr. (1991) Intrinsic electric fields promote. epithelization of wounds in the newt, Notophthalmus viridescens. Dev. Biol. 146, 377–385.

    Article  PubMed  CAS  Google Scholar 

  13. Nuccitelli, R. (1992) Endogenous ionic currents and DC electric fields in multicellular animal tissues. Bioelectromagnetics Suppl 1, 147–157.

    Google Scholar 

  14. McCaig, C. D., Rajnicek, A. M., Song, B. and Zhao, M. (2005) Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978.

    Article  PubMed  Google Scholar 

  15. Zhao, M., Song, B., Pu, J., Forrester, J. V. and McCaig, C. D. (2003) Direct visualization of a stratified epithelium reveals that wounds heal by unified sliding of cell sheets. FASEB J. 17, 397–406.

    Article  PubMed  CAS  Google Scholar 

  16. Robinson, K. R. (1985) The responses of cells to electrical fields: a review. J. Cell Biol. 101, 2023–2027.

    Article  PubMed  CAS  Google Scholar 

  17. Ferrier, J., Ross, S. M., Kanehisa, J. and Aubin, J. E. (1986) Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. J. Cell. Physiol. 129, 283–288.

    Article  PubMed  CAS  Google Scholar 

  18. Soong, H. K., Parkinson, W. C., Bafna, S., Sulik, G. L. and Huang, S. C. (1990) Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Invest. Ophthalmol. Vis. Sci. 31, 2278–2282.

    PubMed  CAS  Google Scholar 

  19. Sillman, A. L., Quang, D. M., Farboud, B., Fang, K. S., Nuccitelli, R. and Isseroff, R. R. (2003) Human dermal fibroblasts do not exhibit directional migration on collagen I in direct-current electric fields of physiological strength. Exp. Dermatol. 12, 396–402.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., et al. (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao, M., Pu, J., Forrester, J. V. and McCaig, C. D. (2002) Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 16, 857–859.

    PubMed  CAS  Google Scholar 

  22. Bourne, H. R. (2006) G-proteins and GPCRs: from the beginning (2006) Ernst Schering Found. Symp. Proc. 2006(2), 1–21.

    Google Scholar 

  23. Wu, L., Valkema, R., Van Haastert, P. J. and Devreotes, P. N. (1995) The G protein beta subunit is essential for multiple responses to chemoattractants in Dictyostelium. J. Cell Biol. 129, 1667–1675.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao, M., Jin, T., McCaig, C. D., Forrester, J. V. and Devreotes, P. N. (2002) Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis. J. Cell Biol. 157, 921–927.

    Article  PubMed  CAS  Google Scholar 

  25. Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W. and Bourne, H. R. (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao, M., Agius-Fernandez, A., Forrester, J. V. and McCaig, C. D. (1996) Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent. J. Cell Sci. 109, 1405–1414.

    PubMed  CAS  Google Scholar 

  27. Gipson, I. K. and Grill, S. M. (1982) A tech.nique for obtaining sheets of intact rabbit corneal epithelium. Invest. Ophthalmol. Vis. Sci. 23, 269–273.

    PubMed  CAS  Google Scholar 

  28. Zhao, M., Agius-Fernandez, A., Forrester, J. V. and McCaig, C. D. (1996) Directed migration of corneal epithelial sheets in physiological electric fields. Invest. Ophthalmol. Vis. Sci. 37, 2548–2558.

    PubMed  CAS  Google Scholar 

  29. Gruler, H. and Nuccitelli, R. (1991) Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Cell Motil. Cytoskeleton 19, 121–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work was supported by research grants from the Wellcome Trust, London, UK, and a startup support from the University of California, Davis (to M.Z). We thank Drs. Servant and Bourne for providing HL60 cells and transfected HL60 cells. We thank Drs. Fei Wang, Jingsong Xu, and Paul Herzmark for helping us with some experiments on HL60 cells.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Tai, G., Reid, B., Cao, L., Zhao, M. (2009). Electrotaxis and Wound Healing: Experimental Methods to Study Electric Fields as a Directional Signal for Cell Migration. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics