Skip to main content

Photo-Activatable Probes for the Analysis of Receptor Function in Living Cells

  • Protocol
  • First Online:
Live Cell Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 591))

Abstract

Photo-activatable (caged) probes are powerful research tools for biological investigation. The superb maneuverability of a light beam allows researchers to activate caged probes with pinpoint accuracy. Recent developments in caging chemistry and two-photon excitation technique further enhance our capability to perform photo-uncaging with even higher spatial and temporal resolution, offering new photonic approaches to study cell signaling dynamics in greater detail. Here we present a sample method that combines the techniques of photo-activation and digital fluorescence microscopy to assay an important class of intracellular receptors for the second messenger D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3, or IP3). The imaging assay is performed in fully intact living cells using a caged and cell membrane permeable ester derivative of IP3, cm-IP3/PM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan, J. H., Forbush, B., 3rd, and Hoffman, J. F. (1978) Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17, 1929–35.

    Article  CAS  PubMed  Google Scholar 

  2. Marriott, G. (Ed.) (1998) Caged Compounds, Methods Enzymol, vol 291, Academic Press, New York.

    Google Scholar 

  3. Goeldner, M., and Givens, R. S. (Eds.) (2005) Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules, Wiley-VCH Verlag GmbH, Weinheim.

    Google Scholar 

  4. Papageorgiou, G., Ogden, D. C., Barth, A., and Corrie, J. E. T. (1999) Photorelease of carboxylic acids from 1-acyl-7-nitroindolines in aqueous solution: Rapid and efficient photorelease of L-glutamate. J Am Chem Soc 121, 6503–4.

    Article  CAS  Google Scholar 

  5. Walker, J. W., Feeney, J., and Trentham, D. R. (1989) Photolabile precursors of inositol phosphates – preparation and properties of 1-(2-nitrophenyl)ethyl esters of myo-inositol 1,4,5-trisphosphate. Biochemistry 28, 3272–80.

    Article  CAS  PubMed  Google Scholar 

  6. Li, W. H., Llopis, J., Whitney, M., Zlokarnik, G., and Tsien, R. Y. (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–41.

    Article  CAS  PubMed  Google Scholar 

  7. Aarhus, R., Gee, K., and Lee, H. C. (1995) Caged cyclic ADP-ribose. Synthesis and use. J Biol Chem 270, 7745–9.

    Article  CAS  PubMed  Google Scholar 

  8. Dakin, K., and Li, W. H. (2007) Cell membrane permeable esters of D-myo-inositol 1,4,5-trisphosphate. Cell Calcium 42, 291–301.

    Article  CAS  PubMed  Google Scholar 

  9. Zipfel, W. R., Williams, R. M., and Webb, W. W. (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21, 1369–77.

    Article  CAS  PubMed  Google Scholar 

  10. Haugland, R. P. (2005) The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Invitrogen Corporation, Eugene, OR, Ch. 19, pp. 879–906.

    Google Scholar 

  11. Palmer, A. E., and Tsien, R. Y. (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1, 1057–65.

    Article  CAS  PubMed  Google Scholar 

  12. West, D. J., and Williams, A. J. (2007) Pharmacological regulators of intracellular calcium release channels. Curr Pharm Des 13, 2428–42.

    Article  CAS  PubMed  Google Scholar 

  13. Furuta, T., Wang, S. S., Dantzker, J. L., Dore, T. M., Bybee, W. J., Callaway, E. M., Denk, W., and Tsien, R. Y. (1999) Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc Natl Acad Sci U S A 96, 1193–200.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, Y., Zheng, Q., Dakin, K., Xu, K., Martinez, M. L., and Li, W. H. (2004) New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J Am Chem Soc 126, 4653–63.

    Article  CAS  PubMed  Google Scholar 

  15. Dakin, K., and Li, W. H. (2006) Infrared-LAMP: two-photon uncaging and imaging of gap junctional communication in three dimensions. Nat Methods 3, 959.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, Y., Pavlos, C. M., Toscano, J. P., and Dore, T. M. (2006) 8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope. J Am Chem Soc 128, 4267–76.

    Article  CAS  PubMed  Google Scholar 

  17. Momotake, A., Lindegger, N., Niggli, E., Barsotti, R. J., and Ellis-Davies, G. C. (2006) The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells. Nat Methods 3, 35–40.

    Article  CAS  PubMed  Google Scholar 

  18. Gug, S., Bolze, F., Specht, A., Bourgogne, C., Goeldner, M., and Nicoud, J. F. (2008) Molecular engineering of photoremovable protecting groups for two-photon uncaging. Angew Chem Int Ed Engl 47, 9525–9.

    Article  CAS  PubMed  Google Scholar 

  19. Brown, E. B., Shear, J. B., Adams, S. R., Tsien, R. Y., and Webb, W. W. (1999) Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 76, 489–99.

    Article  CAS  PubMed  Google Scholar 

  20. Newton, C. L., Mignery, G. A., and Sudhof, T. C. (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269, 28613–9.

    CAS  PubMed  Google Scholar 

  21. Yoneshima, H., Miyawaki, A., Michikawa, T., Furuichi, T., and Mikoshiba, K. (1997) Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors. Biochem J 322 (Pt 2), 591–6.

    CAS  PubMed  Google Scholar 

  22. Patterson, G. H., and Piston, D. W. (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78, 2159–62.

    Article  CAS  PubMed  Google Scholar 

  23. Kiskin, N. I., Chillingworth, R., McCray, J. A., Piston, D., and Ogden, D. (2002) The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals. Eur Biophys J 30, 588–604.

    Article  CAS  PubMed  Google Scholar 

  24. Hatchard, C. G., and Parker, C. A. (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Acad London A 235, 518–36.

    Article  CAS  Google Scholar 

  25. Bernardinelli, Y., Haeberli, C., and Chatton, J. Y. (2005) Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution. Cell Calcium 37, 565–72.

    Article  CAS  PubMed  Google Scholar 

  26. Rapp, G. (1998) Flash lamp-based irradiation of caged compounds. Methods Enzymol 291, 202–22.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, S., and Li, W. H. (2009) Assaying dynamic cell-cell junctional communication using noninvasive and quantitative fluorescence imaging techniques: LAMP and infrared-LAMP. Nat Protoc 4, 94–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, WH. (2010). Photo-Activatable Probes for the Analysis of Receptor Function in Living Cells. In: Papkovsky, D. (eds) Live Cell Imaging. Methods in Molecular Biology, vol 591. Humana Press. https://doi.org/10.1007/978-1-60761-404-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-404-3_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-403-6

  • Online ISBN: 978-1-60761-404-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics