Skip to main content

Lipofuscin: Detection and Quantification by Microscopic Techniques

  • Protocol
  • First Online:
Advanced Protocols in Oxidative Stress II

Part of the book series: Methods in Molecular Biology ((MIMB,volume 594))

Abstract

Since lipofuscin, the so-called “aging pigment”, turned out to play a fundamental role in the aging process, particularly in the postmitotic senescence of muscle or neuronal cells, it became a focus of aging and stress research. During normal aging, lipofuscin accumulates in a nearly linear way, whereas its rate of formation can increase in the final stages of senescence or in the progress of several pathologic processes.

Thus, both in senescence and pathologic processes, lipofuscin can be used as a detectable “marker” to estimate the remaining lifetime of single cells, the amount of long-term oxidative stress cells were subjected to or to quantify and qualify a pathologic progress in vivo or in vitro. To enable this, a quick and easy applicable method of detection and quantification of lipofuscin has to be used, as is provided by fluorescence microscopy determining the autofluorescence via of the “aging pigment”.

In this review, we take a look at different methods of detection and quantification of lipofuscin in single cells by using its physical or chemical features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111

    Article  PubMed  CAS  Google Scholar 

  2. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  PubMed  CAS  Google Scholar 

  3. Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404

    Article  PubMed  CAS  Google Scholar 

  4. Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol 211:134–143

    Article  PubMed  CAS  Google Scholar 

  5. Levine AS, Lemieux B, Brunning R, White JG, Sharp HL, Stadlan E, Krivit W (1968) Ceroid accumulation in a patient with progressive neurological disease. Pediatrics 42:583–591

    PubMed  CAS  Google Scholar 

  6. Terman A, Dalen H, Brunk UT (1999) Ceroid/lipofuscin-loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Exp Gerontol 34:943–957

    Article  PubMed  CAS  Google Scholar 

  7. Terman A, Abrahamsson N, Brunk UT (1999) Ceroid/lipofuscin-loaded human fibroblasts show increased susceptibility to oxidative stress. Exp Gerontol 34:755–770

    Article  PubMed  CAS  Google Scholar 

  8. Jolly RD, Dalefield RR, Palmer DN (1993) Ceroid, lipofuscin and the ceroid-lipofuscinoses (Batten disease). J Inherit Metab Dis 16:280–283

    Article  PubMed  CAS  Google Scholar 

  9. Terman A, Brunk UT (1998) Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev 104:277–291

    Article  PubMed  CAS  Google Scholar 

  10. Koistinaho J, Hartikainen K, Hatanpaa K, Hervonen A (1989) Age pigments in different populations of peripheral neurons in vivo and in vitro. Adv Exp Med Biol 266:49–59

    PubMed  CAS  Google Scholar 

  11. Gutteridge JM (1984) Age pigments: role of iron and copper salts in the formation of fluorescent lipid complexes. Mech Ageing Dev 25:205–214

    Article  PubMed  CAS  Google Scholar 

  12. Yim MB, Kang SO, Chock PB (2000) Enzyme-like activity of glycated cross-linked proteins in free radical generation. Ann N Y Acad Sci 899:168–181

    Article  PubMed  CAS  Google Scholar 

  13. Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 405:21–25

    Article  PubMed  CAS  Google Scholar 

  14. Bourre JM, Haltia M, Daudu O, Monge M, Baumann N (1979) Infantile form of so-called neuronal ceroid lipofuscinosis: lipid biochemical studies, fatty acid analysis of cerebroside sulfatides and sphingomyelin, myelin density profile and lipid composition. Eur Neurol 18:312–321

    Article  PubMed  CAS  Google Scholar 

  15. Granier LA, Langley K, Leray C, Sarlieve LL (2000) Phospholipid composition in late infantile neuronal ceroid lipofuscinosis. Eur J Clin Invest 30:1011–1017

    Article  PubMed  CAS  Google Scholar 

  16. Benavides SH, Monserrat AJ, Farina S, Porta EA (2002) Sequential histochemical studies of neuronal lipofuscin in human cerebral cortex from the first to the ninth decade of life. Arch Gerontol Geriatr 34:219–231

    Article  PubMed  CAS  Google Scholar 

  17. Jolly RD, Douglas BV, Davey PM, Roiri JE (1995) Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontology 41(Suppl 2):283–295

    Article  PubMed  CAS  Google Scholar 

  18. Sohal RS, Donato H Jr (1979) Effect of experimental prolongation of life span on lipofuscin content and lysosomal enzyme activity in the brain of the housefly, Musca domestica. J Gerontol 34:489–496

    Article  PubMed  CAS  Google Scholar 

  19. Brunk UT, Jones CB, Sohal RS (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 275:395–403

    Article  PubMed  CAS  Google Scholar 

  20. Dawson G, Cho S (2000) Batten’s disease: clues to neuronal protein catabolism in lysosomes. J Neurosci Res 60:133–140

    Article  PubMed  CAS  Google Scholar 

  21. Collins J, Holder GE, Herbert H, Adams GG (2006) Batten disease: features to facilitate early diagnosis. Br J Ophthalmol 90:1119–1124

    Article  PubMed  CAS  Google Scholar 

  22. Luiro K, Kopra O, Blom T, Gentile M, Mitchison HM, Hovatta I, Tornquist K, Jalanko A (2006) Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. J Neurosci Res 84:1124–1138

    Article  PubMed  CAS  Google Scholar 

  23. Kristensen K, Lou HC (1983) Central nervous system dysfunction as early sign of neuronal ceroid lipofuscinosis (Batten’s disease). Dev Med Child Neurol 25:588–590

    Article  PubMed  CAS  Google Scholar 

  24. Katz ML, Eldred GE, Siakotos AN, Koppang N (1988) Characterization of disease-specific brain fluorophores in ceroid-lipofuscinosis. Am J Med Genet Suppl 5:253–264

    Article  PubMed  CAS  Google Scholar 

  25. Ben-Shabat S, Itagaki Y, Jockusch S, Sparrow JR, Turro NJ, Nakanishi K (2002) Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew Chem Int Ed Engl 41:814–817

    Article  PubMed  CAS  Google Scholar 

  26. Hammer M, Konigsdorffer E, Liebermann C, Framme C, Schuch G, Schweitzer D, Strobel J (2008) Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 246:105–114

    Article  PubMed  Google Scholar 

  27. Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S (2007) Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 143:463–472

    Article  PubMed  Google Scholar 

  28. Hannover A (1842) Mikroskopiske undersögelser af nervesystemet. Kgl.Danske Vidensk.Kabernes Selkobs Naturv.Math.Afh.Copen­hagen 10, 1–112. Ref Type: Magazine Article

    Google Scholar 

  29. Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    Article  PubMed  CAS  Google Scholar 

  30. Bichile LS (1994) Malondialadehyde: a marker of lipid peroxidation. J Assoc Physicians India 42:769

    PubMed  CAS  Google Scholar 

  31. Gutteridge JM, Quinlan GJ (1983) Malondialdehyde formation from lipid peroxides in the thiobarbituric acid test: the role of lipid radicals, iron salts, and metal chelators. J Appl Biochem 5:293–299

    PubMed  CAS  Google Scholar 

  32. Esterbauer H, Koller E, Slee RG, Koster JF (1986) Possible involvement of the lipid-peroxidation product 4-hydroxynonenal in the formation of fluorescent chromolipids. Biochem J 239:405–409

    PubMed  CAS  Google Scholar 

  33. Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, von ZT, Davies KJ (2000) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14:1490–1498

    Google Scholar 

  34. Grune T, Jung T, Merker K, Davies KJ (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530

    Article  PubMed  CAS  Google Scholar 

  35. Sitte N, Merker K, von ZT, Grune T (2000) Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med 28:701–708

    Google Scholar 

  36. Sitte N, Merker K, Grune T (1998) Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett 440:399–402

    Article  PubMed  CAS  Google Scholar 

  37. Elleder M, Sokolova J, Hrebicek M (1997) Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol 93:379–390

    Article  PubMed  CAS  Google Scholar 

  38. Kida E, Wisniewski KE, Golabek AA (1993) Increased expression of subunit c of mitochondrial ATP synthase in brain tissue from neuronal ceroid lipofuscinoses and mucopolysaccharidosis cases but not in long-term fibroblast cultures. Neurosci Lett 164:121–124

    Article  PubMed  CAS  Google Scholar 

  39. Wang X, Quinn PJ (1999) Vitamin E and its function in membranes. Prog Lipid Res 38:309–336

    Article  PubMed  CAS  Google Scholar 

  40. Rupar CA, Albo S, Whitehall JD (1992) Rat liver lysosome membranes are enriched in alpha-tocopherol. Biochem Cell Biol 70:486–488

    Article  PubMed  CAS  Google Scholar 

  41. Fattoretti P, Bertoni-Freddari C, Casoli T, Di SG, Solazzi M, Corvi E (2002) Morphometry of age pigment (lipofuscin) and of ceroid pigment deposits associated with vitamin E deficiency. Arch Gerontol Geriatr 34:263–268

    Article  PubMed  CAS  Google Scholar 

  42. Bertoni-Freddari C, Fattoretti P, Casoli T, Di SG, Solazzi M, Corvi E (2002) Morphometric investigations of the mitochondrial damage in ceroid lipopigment accumulation due to vitamin E deficiency. Arch Gerontol Geriatr 34:269–274

    Article  PubMed  CAS  Google Scholar 

  43. Hutter E, Skovbro M, Lener B, Prats C, Rabol R, Dela F, Jansen-Durr P (2007) Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 6:245–256

    Article  PubMed  Google Scholar 

  44. Porta EA (2002) Pigments in aging: an overview. Ann N Y Acad Sci 959:57–65

    Article  PubMed  CAS  Google Scholar 

  45. Tsai L, Szweda PA, Vinogradova O, Szweda LI (1998) Structural characterization and immunochemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proc Natl Acad Sci USA 95:7975–7980

    Article  PubMed  CAS  Google Scholar 

  46. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726

    Article  PubMed  CAS  Google Scholar 

  47. Boulton M, Rozanowska M, Rozanowski B (2001) Retinal photodamage. J Photochem Photobiol B 64:144–161

    Article  PubMed  CAS  Google Scholar 

  48. Onetti MA (2000) Confocal laser scanning microscopy. Adv Clin Path 4:235–239

    Google Scholar 

  49. Roderfeld M, Matern S, Roeb E (2003) Confocal laser scanning microscopy: a deep look into the cell. Dtsch Med Wochenschr 128:2539–2542

    Article  PubMed  CAS  Google Scholar 

  50. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918

    Article  PubMed  CAS  Google Scholar 

  51. Martini J, Andresen V, Anselmetti D (2007) Scattering suppression and confocal detection in multifocal multiphoton microscopy. J Biomed Opt 12:034010

    Article  PubMed  Google Scholar 

  52. Shao ZF, Baumann O, Somlyo AP (1991) Axial resolution of confocal microscopes with parallel-beam detection. J Microsc 164:13–19

    Article  PubMed  CAS  Google Scholar 

  53. Seehafer SS, Pearce DA (2006) You say lipofuscin, we say ceroid: defining autofluore­scent storage material. Neurobiol Aging 27:576–588

    Article  PubMed  CAS  Google Scholar 

  54. Girish V, Vijayalakshmi A (2004) Affordable image analysis using NIH Image/ImageJ. Indian J Cancer 41:47

    PubMed  CAS  Google Scholar 

  55. Papadopulos F, Spinelli M, Valente S, Foroni L, Orrico C, Alviano F, Pasquinelli G (2007) Common tasks in microscopic and ultrastructural image analysis using ImageJ. Ultrastruct Pathol 31:401–407

    Article  PubMed  Google Scholar 

  56. Hachet-Haas M, Converset N, Marchal O, Matthes H, Gioria S, Galzi JL, Lecat S (2006) FRET and colocalization analyzer – a method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ Plug-in. Microsc Res Tech 69:941–956

    Article  PubMed  CAS  Google Scholar 

  57. Collins TJ (2007) ImageJ Microsc. Biotechniques 43:25–30

    Article  PubMed  Google Scholar 

  58. Feige JN, Sage D, Wahli W, Desvergne B, Gelman L (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68:51–58

    Article  PubMed  CAS  Google Scholar 

  59. Anderson JR, Wilcox MJ, Wade PR, Barrett SF (2003) Segmentation and 3D reconstruction of biological cells from serial slice images. Biomed Sci Instrum 39:117–122

    PubMed  Google Scholar 

  60. Jung T, Grune T (2008) The proteasome and its role in the degradation of oxidized proteins. IUBMB Life 60:743–752

    Article  PubMed  CAS  Google Scholar 

  61. Bader N, Jung T, Grune T (2007) The proteasome and its role in nuclear protein maintenance. Exp Gerontol 42:864–870

    Article  PubMed  CAS  Google Scholar 

  62. Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES (2003) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 278:28026–28037

    Article  PubMed  CAS  Google Scholar 

  63. Friguet B (2002) Aging of proteins and the proteasome. Prog Mol Subcell Biol 29:17–33

    Article  PubMed  CAS  Google Scholar 

  64. Nilsson E, Yin D (1997) Preparation of artificial ceroid/lipofuscin by UV-oxidation of subcellular organelles. Mech Ageing Dev 99:61–78

    Article  PubMed  CAS  Google Scholar 

  65. Jobst K, Lakatos A (1996) The liver cell histones of diabetic patients contain glycation endproducts (AGEs) which may be lipofuscin components. Clin Chim Acta 256:203–204

    Article  PubMed  CAS  Google Scholar 

  66. Ahmed N (2005) Advanced glycation endproducts – role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3–21

    Article  PubMed  CAS  Google Scholar 

  67. Pawlak A, Rozanowska M, Zareba M, Lamb LE, Simon JD, Sarna T (2002) Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts. Arch Biochem Biophys 403:59–62

    Article  PubMed  CAS  Google Scholar 

  68. Framme C, Schule G, Birngruber R, Roider J, Schutt F, Kopitz J, Holz FG, Brinkmann R (2004) Temperature dependent fluorescence of A2-E, the main fluorescent lipofuscin component in the RPE. Curr Eye Res 29:287–291

    Article  PubMed  CAS  Google Scholar 

  69. Hammer M, Richter S, Kobuch K, Mata N, Schweitzer D (2008) Intrinsic tissue fluorescence in an organotypic perfusion culture of the porcine ocular fundus exposed to blue light and free radicals. Graefes Arch Clin Exp Ophthalmol 246:979–988

    Article  PubMed  Google Scholar 

  70. Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s Membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci 43:2435–2441

    PubMed  Google Scholar 

  71. Fang C, Peng M, Li G, Tian J, Yin D (2007) New functions of glucosamine as a scavenger of the lipid peroxidation product malondialdehyde. Chem Res Toxicol 20:947–953

    Article  PubMed  CAS  Google Scholar 

  72. Yin DZ, Brunk UT (1991) Microfluorometric and fluorometric lipofuscin spectral discrepancies: a concentration-dependent metachromatic effect? Mech Ageing Dev 59:95–109

    Article  PubMed  CAS  Google Scholar 

  73. Li L, Li G, Sheng S, Yin D (2005) Substantial reaction between histamine and malondialdehyde: a new observation of carbonyl stress. Neuro Endocrinol Lett 26:799–805

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Grune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jung, T., Höhn, A., Grune, T. (2010). Lipofuscin: Detection and Quantification by Microscopic Techniques. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology, vol 594. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-411-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-411-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-410-4

  • Online ISBN: 978-1-60761-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics