Skip to main content

A High-Performance Reconfigurable Computing Solution for Peptide Mass Fingerprinting

  • Protocol
  • First Online:
Proteome Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 604))

  • 4663 Accesses

Abstract

High-throughput, MS-based proteomics studies are generating very large volumes of biologically relevant data. Given the central role of proteomics in emerging fields such as system/synthetic biology and biomarker discovery, the amount of proteomic data is expected to grow at unprecedented rates over the next decades. At the moment, there is pressing need for high-performance computational solutions to accelerate the analysis and interpretation of this data.

Performance gains achieved by grid computing in this area are not spectacular, especially given the significant power consumption, maintenance costs and floor space required by large server farms.

This paper introduces an alternative, cost-effective high-performance bioinformatics solution for peptide mass fingerprinting based on Field Programmable Gate Array (FPGA) devices. At the heart of this approach stands the concept of mapping algorithms on custom digital hardware that can be programmed to run on FPGA. Specifically in this case, the entire computational flow associated with peptide mass fingerprinting, namely raw mass spectra processing and database searching, has been mapped on custom hardware processors that are programmed to run on a multi-FPGA system coupled with a conventional PC server. The system achieves an almost 2,000-fold speed-up when compared with a conventional implementation of the algorithms in software running on a 3.06 GHz Xeon PC server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrade, T., Berglund, L., Uhlén, M., and Odeberg, J. (2006) Using Grid technology for computationally intensive applied bioinformatics analyses. In Silico Biol. 6, 495-504.

    CAS  PubMed  Google Scholar 

  2. El-Ghazawi, T., Bennett, D., Poznanovic, D., Cantle, A., Underwood, K., Pennington, R., Buell, D., George, A., and Kindratenko, V. (2006) Is high-performance reconfigurable computing the next supercomputing paradigm? Proceedings of the 2006 ACM/IEEE conference on Supercomputing,Tampa, Florida. doi:10.1109/SC.2006.38.

  3. Estrin, G. (1960) Organization of computer systems - the fixed plus variable structure computer. Proceeding of western joint computer conference, New York, pp. 33-40.

    Google Scholar 

  4. Estrin, G. (2002) Reconfigurable computer origins: the UCLA fixed-plus-variable (F+V) structure computer. IEEE Ann. Hist. Comput. 24, 3-9.

    Article  Google Scholar 

  5. Gokhale, M.B., and Graham, P.S. (2005) Reconfigurable computing: accelerating computation with Field-Programmable Gate arrays, Springer.

    Google Scholar 

  6. Hauck, S., and Dehon, A. (2008) Reconfigu­rable Computing: The theory and practice of FPGA-based computation, Elsevier.

    Google Scholar 

  7. Fagin, B., Watt, J.G., and Gross, R. (1993) A special-purpose processor for gene sequence analysis Comput. Appl. BioSci. 9, 221-226.

    CAS  Google Scholar 

  8. Hughey, R. (1996) Parallel hardware for sequence comparison and alignment. Comput. Appl. BioSci. 12, 473-479.

    CAS  PubMed  Google Scholar 

  9. Wozniak, A. (1997) Using video-oriented instructions to speed up sequence comparison. Comput. Appl. BioSci. 13, 145-150.

    CAS  PubMed  Google Scholar 

  10. Guerdoux-Jamet, P., and Lavenier, D. (1997) SAMBA: hardware accelerator for biological sequence comparison Comput. Appl. BioSci. 13, 609-615.

    CAS  Google Scholar 

  11. Lavenier, D. (1998) Speeding up genome computations with systolic accelerator. SIAM News 31, 1-8.

    Google Scholar 

  12. Guccione, A.S., and Keller, E. (2002) Gene matching using Jbits. Proceedings of the reconfigurable computing is going mainstream, 12th international conference on field-programmable logic and applications, pp. 1168-1171.

    Google Scholar 

  13. Simmler, H., Singpiel, H., and Männer, R. (2004) Real-time primer design for DNA chips. Interscience Concurr. Comput. Pract. Exper. 16, 855-872.

    Article  Google Scholar 

  14. Marongiu, A., Palazzari, P., and Rosato, V. (2003) Designing hardware for protein sequence analysis. Bioinformatics 19, 1739-1740.

    Article  CAS  PubMed  Google Scholar 

  15. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., and Maskell, D. (2005) Using reconfigurable hardware to accelerate multiple sequence alignment with ClustaIW. Bioinformatics 21, 3431-3432.

    Article  CAS  PubMed  Google Scholar 

  16. Anish, T.A., Dumontier, M., Rose, J.S., and Hogue, C.W.V. (2005) Hardware-accelerated protein identification for mass spectrometry. Rapid Commun. Mass Spectr. 19, 833-837.

    Article  Google Scholar 

  17. Panitz, F. et al. (2007) SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation. Bioinformatics 23, 387-391.

    Article  Google Scholar 

  18. Dandass, Y.S., Burgess, S.C., Lawrence, M., and Bridges, S.M. (2008) Accelerating string set matching in FPGA hardware for bioinformatics research. BMC Bioinformatics 9, doi: 10.1186/1471-2105-9-197.

  19. Bogdan, I.A, Coca, D., Rivers J., and Beynon J.R. (2007) Hardware acceleration of processing of mass spectrometric data for proteomics. Bioinformatics 23, 724-731.

    Google Scholar 

  20. Bogdan, I.A., Rivers, J., Beynon, J.R., and Coca, D., (2008) High-performance hardware implementation of a parallel database search engine for real-time peptide mass fingerprinting. Bioinformatics 24, 1498-1502.

    Article  CAS  PubMed  Google Scholar 

  21. Samuelsson, J., Dalevi, D., Levander, F., and Rögnvaldsson, T. (2004) Modular, scriptable and automated analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics 20, 3628-3635.

    Article  CAS  PubMed  Google Scholar 

  22. Breen, E.J., Hopwood, F.G., Williams, K.L., and Wilkins, M.R. (2000) Automatic Poisson peak harvesting for high throughput protein identification. Electrophoresis 21, 2243-2251.

    Article  CAS  PubMed  Google Scholar 

  23. Savitzky, A., and Golay, M.J.E. (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627-1639.

    Article  CAS  Google Scholar 

  24. Xilinx. (2004) Distributed arithmetic FIR filter V9.0, DS240, Xilinx Inc.

    Google Scholar 

  25. Pappin, D.J., Hojrup, P., and Bleasby, A.J., (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327-332.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, W., and Chait, B.T., (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72, 2482-2489.

    Article  CAS  PubMed  Google Scholar 

  27. Xilinx. (2007) Virtex II platform FPGAs: complete data sheet. DS031, Xilinx Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Coca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Coca, D., Bogdan, I., Beynon, R.J. (2010). A High-Performance Reconfigurable Computing Solution for Peptide Mass Fingerprinting. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-444-9_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-443-2

  • Online ISBN: 978-1-60761-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics