Skip to main content

Nonprimate Models for Glaucoma Retinopathy and Optic Neuropathy

  • Protocol
  • First Online:
Animal Models for Retinal Diseases

Part of the book series: Neuromethods ((NM,volume 46))

Abstract

The generation and advancement of animal models have contributed significantly to the advancement of glaucoma research. This chapter describes and summarizes major nonprimate animal models useful for the study of this disease. Rodent models, both rats and mice, have been popular for glaucoma studies, because of the relatively better-developed genetic and genomic tools and the similarity of the relevant ocular structures between human and these animals. The larger animals, e.g., rabbit, feline, canine, bovine, ovine, and porcine models, have also been successfully used and provided valuable information on various aspects of the disease. Some of the models depicted in this chapter involve a transient or chronic ocular hypertension. Others do not affect intraocular pressure, but instead address certain specific mechanisms of the disease and serve as surrogate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pang I-H, clark AF (2007) Rodent models for glaucoma retinopathy and optic neuropathy. J Glaucoma 16:483-505

    Article  PubMed  Google Scholar 

  2. Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64(1):85-96

    Article  CAS  PubMed  Google Scholar 

  3. Morrison JC, Johnson EC, Cepurna W, Jia L (2005) Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res 24(2):217-240

    Article  PubMed  Google Scholar 

  4. Schlamp CL, Johnson EC, Li Y, Morrison JC, Nickells RW (2001) Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol Vis 7:192-201

    CAS  PubMed  Google Scholar 

  5. Hanninen VA, Pantcheva MB, Freeman EE, Poulin NR, Grosskreutz CL (2002) Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res 25(6):389-395

    Article  PubMed  Google Scholar 

  6. Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW, Cordeiro MF (2005) Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 46(1):175-182

    Article  PubMed  Google Scholar 

  7. Chauhan BC, Pan J, Archibald ML, LeVatte TL, Kelly ME, Tremblay F (2002) Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci 43(9):2969-2976

    PubMed  Google Scholar 

  8. Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC (2000) Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 41(2):431-442

    CAS  PubMed  Google Scholar 

  9. Tezel G, Yang X, Cai J (2005) Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci 46(9):3177-3187

    Article  PubMed  Google Scholar 

  10. Jia L, Cepurna WO, Johnson EC, Morrison JC (2000) Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci 41(6):1380-1385

    CAS  PubMed  Google Scholar 

  11. Ahmed F, Brown KM, Stephan DA, Morrison JC, Johnson EC, Tomarev SI (2004) Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Invest Ophthalmol Vis Sci 45(4):1247-1258

    Article  PubMed  Google Scholar 

  12. Fortune B, Bui BV, Morrison JC et al (2004) Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci 45(6):1854-1862

    Article  PubMed  Google Scholar 

  13. Pang I-H, Johnson EC, Jia L et al (2005) Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage. Invest Ophthalmol Vis Sci 46(4):1313-1321

    Article  PubMed  Google Scholar 

  14. Morrison JC, Nylander KB, Lauer AK, Cepurna WO, Johnson E (1998) Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 39(3):526-531

    CAS  PubMed  Google Scholar 

  15. Ueda J, Sawaguchi S, Hanyu T et al (1998) Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 42(5):337-344

    Article  CAS  PubMed  Google Scholar 

  16. Lam TT, Kwong JM, Tso MO (2003) Early glial responses after acute elevated intraocular pressure in rats. Invest Ophthalmol Vis Sci 44(2):638-645

    Article  PubMed  Google Scholar 

  17. Ishii Y, Kwong JM, Caprioli J (2003) Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci 44(5):1982-1992

    Article  PubMed  Google Scholar 

  18. WoldeMussie E, Ruiz G, Wijono M, Wheeler LA (2001) Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci 42(12):2849-2855

    CAS  PubMed  Google Scholar 

  19. Hare W, WoldeMussie E, Lai R et al (2001) Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv Ophthalmol 45(Suppl 3):S284-S289

    Article  PubMed  Google Scholar 

  20. Ben Shlomo G, Bakalash S, Lambrou GN et al (2005) Pattern electroretinography in a rat model of ocular hypertension: functional evidence for early detection of inner retinal damage. Exp Eye Res 81(3):340-349

    CAS  PubMed  Google Scholar 

  21. Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME (2002) Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 43(2):402-410

    PubMed  Google Scholar 

  22. Martin KR, Levkovitch Verbin H, Valenta D, Baumrind L, Pease ME, Quigley HA (2002) Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 43(7):2236-2243

    PubMed  Google Scholar 

  23. Martin KR, Quigley HA, Zack DJ et al (2003) Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 44(10):4357-4365

    Article  PubMed  Google Scholar 

  24. Grozdanic SD, Kwon YH, Sakaguchi DS, Kardon RH, Sonea IM (2004) Functional evaluation of retina and optic nerve in the rat model of chronic ocular hypertension. Exp Eye Res 79(1):75-83

    Article  CAS  PubMed  Google Scholar 

  25. Aihara M, Lindsey JD, Weinreb RN (2003) Experimental mouse ocular hypertension: establishment of the model. Invest Ophthalmol Vis Sci 44(10):4314-4320

    Article  PubMed  Google Scholar 

  26. Grozdanic SD, Betts DM, Sakaguchi DS, Allbaugh RA, Kwon YH, Kardon RH (2003) Laser-induced mouse model of chronic ocular hypertension. Invest Ophthalmol Vis Sci 44(10):4337-4346

    Article  PubMed  Google Scholar 

  27. Gross RL, Ji J, Chang P et al (2003) A mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans Am Ophthalmol Soc 101:163-169

    PubMed  Google Scholar 

  28. Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN (2003) Optic nerve damage in experimental mouse ocular hypertension. Invest Ophthalmol Vis Sci 44(10):4321-4330

    Article  PubMed  Google Scholar 

  29. Ji J, Chang P, Pennesi ME et al (2005) Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vision Res 45(2):169-179

    Article  PubMed  Google Scholar 

  30. Benozzi J, Nahum LP, Campanelli JL, Rosenstein RE (2002) Effect of hyaluronic acid on intraocular pressure in rats. Invest Ophthalmol Vis Sci 43(7):2196-2200

    PubMed  Google Scholar 

  31. Moreno MC, Marcos HJ, Oscar Croxatto J et al (2005) A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Exp Eye Res 81(1):71-80

    Article  CAS  PubMed  Google Scholar 

  32. Urcola JH, Hernandez M, Vecino E (2006) Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp Eye Res 83(2):429-437

    Article  CAS  PubMed  Google Scholar 

  33. Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC (1995) Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 61(3):379-382

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC (1995) Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 61(1):33-44

    Article  CAS  PubMed  Google Scholar 

  35. Sawada A, Neufeld AH (1999) Confirmation of the rat model of chronic, moderately elevated intraocular pressure. Exp Eye Res 69(5):525-531

    Article  CAS  PubMed  Google Scholar 

  36. Neufeld AH, Sawada A, Becker B (1999) Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 96(17):9944-9948

    Article  CAS  PubMed  Google Scholar 

  37. Mittag TW, Danias J, Pohorenec G et al (2000) Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 41(11):3451-3459

    CAS  PubMed  Google Scholar 

  38. Ko ML, Hu DN, Ritch R, Sharma SC (2000) The combined effect of brain-derived neurotrophic factor and a free radical scavenger in experimental glaucoma. Invest Ophthalmol Vis Sci 41(10):2967-2971

    CAS  PubMed  Google Scholar 

  39. Grozdanic SD, Betts DM, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM (2003) Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Exp Eye Res 77(1):27-33

    Article  CAS  PubMed  Google Scholar 

  40. Bayer AU, Danias J, Brodie S et al (2001) Electroretinographic abnormalities in a rat glaucoma model with chronic elevated intraocular pressure. Exp Eye Res 72(6):667-677

    Article  CAS  PubMed  Google Scholar 

  41. Yu S, Tanabe T, Yoshimura N (2006) A rat model of glaucoma induced by episcleral vein ligation. Exp Eye Res 83(4):758-770

    Article  CAS  PubMed  Google Scholar 

  42. Kanamori A, Nakamura M, Nakanishi Y, Yamada Y, Negi A (2005) Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma. Exp Eye Res 81(1):48-56

    Article  CAS  PubMed  Google Scholar 

  43. Stone EM, Fingert JH, Alward WLM et al (1997) Identification of a gene that causes primary open angle glaucoma. Science 275(5300):668-670

    Article  CAS  PubMed  Google Scholar 

  44. Shepard AR, Jacobson N, Millar JC et al (2007) Glaucoma-causing myocilin mutants require he Peroxisomal Targeting Signal-1 Receptor (PTS1R) to elevate intraocular pressure. Hum Mol Genet 16:609-617

    Article  CAS  PubMed  Google Scholar 

  45. Clark AF, Millar JC, Pang I-H, Jacobson N, Shepard A (2006) Adenoviral gene transfer of active human transforming growth factor-β2 induces elevated intraocular pressure in rats. ARVO Abstract 2006:4771.

    Google Scholar 

  46. Tripathi RC, Li J, Chan WF, Tripathi BJ (1994) Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res 59(6):723-727

    Article  CAS  PubMed  Google Scholar 

  47. Thompson JT, Smiddy WE, Williams GA et al (1998) Comparison of recombinant transforming growth factor-beta-2 and placebo as an adjunctive agent for macular hole surgery. Ophthalmology 105:700-706

    Article  CAS  PubMed  Google Scholar 

  48. Wang W-H, McNatt LG, Pang I-H et al (2008) Increased expression of Wnt antagonist sFRP1 in glaucoma and its regulation of intraocular pressure. J Clin Invest 118:1056-1064

    CAS  PubMed  Google Scholar 

  49. Wang W-H, McNatt LG, Pang I-H et al (2008) Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci 49:1916-1923

    Article  PubMed  Google Scholar 

  50. Shepard AR, Nolan MJ, Millar JC, et al (2008) CD44 overexpression causes ocular hypertension in the mouse. ARVO Abstract 2008:2880.

    Google Scholar 

  51. Borras T, Brandt CR, Nickells R, Ritch R (2002) Gene therapy for glaucoma: treating a multifaceted, chronic disease. Invest Ophthalmol Vis Sci 43(8):2513-2518

    PubMed  Google Scholar 

  52. Millar JC, Wang Y, Pang I-H, Wang W-H, Clark AF (2008) Effect of immunosuppression with anti-CD40L antibody on adenoviral-mediated transgene expression in mouse anterior segment. Mol Vis 14:10-19

    CAS  PubMed  Google Scholar 

  53. Challa P, Luna C, Liton PB et al (2005) Lentiviral mediated gene delivery to the anterior chamber of rodent eyes. Mol Vis 11(49):425-430

    CAS  PubMed  Google Scholar 

  54. Balaggan KS, Binley K, Esapa M et al (2006) Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med 8(3):275-285

    Article  CAS  PubMed  Google Scholar 

  55. Thanos S, Naskar R (2004) Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant. Exp Eye Res 79(1):119-129

    Article  CAS  PubMed  Google Scholar 

  56. Aihara M, Lindsey JD, Weinreb RN (2003) Ocular hypertension in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 44(4):1581-1585

    Article  PubMed  Google Scholar 

  57. Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN (2004) Regional optic nerve damage in experimental mouse glaucoma. Invest Ophthalmol Vis Sci 45(12):4352-4358

    Article  PubMed  Google Scholar 

  58. Libby RT, Li Y, Savinova OV et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by bax gene dosage. PLoS Genet 1(1):e4

    Article  CAS  Google Scholar 

  59. John SW, Smith RS, Savinova OV et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951-962

    CAS  PubMed  Google Scholar 

  60. Zhou X, Li F, Kong L, Tomita H, Li C, Cao W (2005) Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem 280(35):31240-31248

    Article  CAS  PubMed  Google Scholar 

  61. Chang B, Smith RS, Hawes NL et al (1999) Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21(4):405-409

    Article  CAS  PubMed  Google Scholar 

  62. Anderson MG, Smith RS, Hawes NL et al (2002) Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30(1):81-85

    Article  CAS  PubMed  Google Scholar 

  63. Anderson MG, Libby RT, Mao M et al (2006) Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biol 4:20

    Article  PubMed  CAS  Google Scholar 

  64. Mo JS, Anderson MG, Gregory M et al (2003) By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma. J Exp Med 197(10):1335-1344

    Article  CAS  PubMed  Google Scholar 

  65. John SW (2005) Mechanistic insights into glaucoma provided by experimental genetics the cogan lecture. Invest Ophthalmol Vis Sci 46(8):2649-2661

    Article  PubMed  Google Scholar 

  66. Libby RT, Anderson MG, Pang I-H et al (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637-648

    Article  PubMed  Google Scholar 

  67. Libby RT, Gould DB, Anderson MG, John SW (2005) Complex genetics of glaucoma susceptibility. Annu Rev Genomics Hum Genet 6:15-44

    Article  CAS  PubMed  Google Scholar 

  68. Schuettauf F, Vorwerk C, Naskar R et al (2004) Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity. Curr Eye Res 29(6):379-386

    Article  CAS  PubMed  Google Scholar 

  69. Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW (2006) Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 7:66

    Article  PubMed  CAS  Google Scholar 

  70. Reichstein D, Ren L, Filippopoulos T, Mittag T, Danias J (2007) Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma. Exp Eye Res 84(1):13-21

    Article  CAS  PubMed  Google Scholar 

  71. Howell GR, Libby RT, Jakobs TC et al (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179:1523-1537

    Article  CAS  PubMed  Google Scholar 

  72. Moon JI, Kim IB, Gwon JS et al (2005) Changes in retinal neuronal populations in the DBA/2J mouse. Cell Tissue Res 320(1):51-59

    Article  CAS  PubMed  Google Scholar 

  73. Sheldon WG, Warbritton AR, Bucci TJ, Turturro A (1995) Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice. Lab Anim Sci 45(5):508-518

    CAS  PubMed  Google Scholar 

  74. Danias J, Kontiola AI, Filippopoulos T, Mittag T (2003) Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci 44(3):1138-1141

    Article  PubMed  Google Scholar 

  75. Filippopoulos T, Danias J, Chen B, Podos SM, Mittag TW (2006) Topographic and morphologic analyses of retinal ganglion cell loss in old DBA/2NNia mice. Invest Ophthalmol Vis Sci 47(5):1968-1974

    Article  PubMed  Google Scholar 

  76. May CA, Mittag T (2006) Optic nerve degeneration in the DBA/2NNia mouse: is the lamina cribrosa important in the development of glaucomatous optic neuropathy? Acta Neuropathol 111(2):158-167

    Article  PubMed  Google Scholar 

  77. Bayer AU, Neuhardt T, May AC et al (2001) Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Invest Ophthalmol Vis Sci 42(6):1258-1265

    CAS  PubMed  Google Scholar 

  78. Sun Q, Ooi VE, Chan SO (2001) N-methyl-D-aspartate-induced excitotoxicity in adult rat retina is antagonized by single systemic injection of MK-801. Exp Brain Res 138(1):37-45

    Article  CAS  PubMed  Google Scholar 

  79. Kwong JM, Lam TT, Caprioli J (2003) Hyperthermic pre-conditioning protects retinal neurons from N-methyl-D-aspartate (NMDA)-induced apoptosis in rat. Brain Res 970(1):119-130

    Article  CAS  PubMed  Google Scholar 

  80. El Remessy AB, Khalil IE, Matragoon S et al (2003) Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 163(5):1997-2008

    CAS  PubMed  Google Scholar 

  81. Vorwerk CK, Kreutz MR, Dreyer EB, Sabel BA (1996) Systemic L-kynurenine administration partially protects against NMDA, but not kainate-induced degeneration of retinal ganglion cells, and reduces visual discrimination deficits in adults rats. Invest Ophthalmol Vis Sci 37(12):2382-2392

    CAS  PubMed  Google Scholar 

  82. Osborne NN, DeSantis L, Bae JH et al (1999) Topically applied betaxolol attenuates NMDA-induced toxicity to ganglion cells and the effects of ischaemia to the retina. Exp Eye Res 69(3):331-342

    Article  CAS  PubMed  Google Scholar 

  83. Nash MS, Osborne NN (1999) Assessment of Thy-1 mRNA levels as an index of retinal ganglion cell damage. Invest Ophthalmol Vis Sci 40(6):1293-1298

    CAS  PubMed  Google Scholar 

  84. Chidlow G, Osborne NN (2003) Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res 963(1-2):298-306

    Article  CAS  PubMed  Google Scholar 

  85. Shi JM, Jiang YQ, Liu XY (2004) Morphological changes of retina after N-methyl-D-aspartate induced damage in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 29(3):287-291

    PubMed  Google Scholar 

  86. Siliprandi R, Canella R, Carmignoto G et al (1992) N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. Vis Neurosci 8(6):567-573

    Article  CAS  PubMed  Google Scholar 

  87. Casson RJ, Chidlow G, Wood JP, Vidal Sanz M, Osborne NN (2004) The effect of retinal ganglion cell injury on light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 45(2):685-693

    Article  PubMed  Google Scholar 

  88. Lam TT, Abler AS, Kwong JM, Tso MO (1999) N-methyl-D-aspartate (NMDA)-induced apoptosis in rat retina. Invest Ophthalmol Vis Sci 40(10):2391-2397

    CAS  PubMed  Google Scholar 

  89. Bui BV, Fortune B (2003) Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 555(Pt 1):153-173

    Article  PubMed  CAS  Google Scholar 

  90. Kermer P, Klocker N, Bahr M (2001) Modulation of metabotropic glutamate receptors fails to prevent the loss of adult rat retinal ganglion cells following axotomy or N-methyl-D-aspartate lesion in vivo. Neurosci Lett 315(3):117-120

    Article  CAS  PubMed  Google Scholar 

  91. Maruyama I, Maeda T, Okisaka S, Mizukawa A, Nakazawa M, Ohguro H (2002) Autoantibody against neuron-specific enolase found in glaucoma patients causes retinal dysfunction in vivo. Jpn J Ophthalmol 46(1):1-12

    Article  CAS  PubMed  Google Scholar 

  92. Sisk DR, Kuwabara T, Kirsch AD (1984) Behavioral recovery in albino rats with glutamate-damaged retinas. Invest Ophthalmol Vis Sci 25(10):1124-1128

    CAS  PubMed  Google Scholar 

  93. Sisk DR, Kuwabara T (1985) Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate. Graefes Arch Clin Exp Ophthalmol 223(5):250-258

    Article  CAS  PubMed  Google Scholar 

  94. Sabel BA, Sautter J, Stoehr T, Siliprandi R (1995) A behavioral model of excitotoxicity: retinal degeneration, loss of vision, and subsequent recovery after intraocular NMDA administration in adult rats. Exp Brain Res 106(1):93-105

    Article  CAS  PubMed  Google Scholar 

  95. Li Y, Schlamp CL, Poulsen GL, Jackson MW, Griep AE, Nickells RW (2002) p53 regulates apoptotic retinal ganglion cell death induced by N-methyl-D-aspartate. Mol Vis 8:341-350

    CAS  PubMed  Google Scholar 

  96. Li Y, Schlamp CL, Nickells RW (1999) Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci 40(5):1004-1008

    CAS  PubMed  Google Scholar 

  97. Kumada M, Niwa M, Hara A et al (2005) Tissue type plasminogen activator facilitates NMDA-receptor-mediated retinal apoptosis through an independent fibrinolytic cascade. Invest Ophthalmol Vis Sci 46(4):1504-1507

    Article  PubMed  Google Scholar 

  98. Harada T, Harada C, Nakamura K et al (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763-1770

    Article  CAS  PubMed  Google Scholar 

  99. Kielczewski JL, Pease ME, Quigley HA (2005) The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci 46(9):3188-3196

    Article  PubMed  Google Scholar 

  100. Isenmann S, Engel S, Gillardon F, Bahr M (1999) Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression. Cell Death Differ 6(7):673-682

    Article  CAS  PubMed  Google Scholar 

  101. Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M (2000) Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res 85(1-2):144-150

    Article  CAS  PubMed  Google Scholar 

  102. Kittlerova P, Valouskova V (2000) Retinal ganglion cells regenerating through the peripheral nerve graft retain their electroretinographic responses and mediate light-induced behavior. Behav Brain Res 112(1-2):187-194

    Article  CAS  PubMed  Google Scholar 

  103. Ju WK, Kim KY, Lee MY et al (2000) Up-regulated CNTF plays a protective role for retrograde degeneration in the axotomized rat retina. NeuroReport 11(17):3893-3896

    Article  CAS  PubMed  Google Scholar 

  104. Chaudhary P, Ahmed F, Quebada P, Sharma SC (1999) Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 67(1):36-45

    Article  CAS  PubMed  Google Scholar 

  105. Heiduschka P, Thanos S (2000) Aurintricarboxylic acid promotes survival and regeneration of axotomised retinal ganglion cells in vivo. Neuropharmacology 39(5):889-902

    Article  CAS  PubMed  Google Scholar 

  106. Lingor P, Koeberle P, Kugler S, Bahr M (2005) Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 128(Pt 3):550-558

    Article  PubMed  Google Scholar 

  107. Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86(3):579-584

    Article  CAS  PubMed  Google Scholar 

  108. Kilic E, Hermann DM, Isenmann S, Bahr M (2002) Effects of pinealectomy and melatonin on the retrograde degeneration of retinal ganglion cells in a novel model of intraorbital optic nerve transection in mice. J Pineal Res 32(2):106-111

    Article  CAS  PubMed  Google Scholar 

  109. Chierzi S, Cenni MC, Maffei L et al (1998) Protection of retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 38(10):1537-1543

    Article  CAS  PubMed  Google Scholar 

  110. Levkovitch Verbin H, Quigley HA, Martin KR, Zack DJ, Pease ME, Valenta DF (2003) A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci 44(8):3388-3393

    Article  PubMed  Google Scholar 

  111. Zalish M, Lavie V, Duvdevani R, Yoles E, Schwartz M (1993) Gangliosides attenuate axonal loss after optic nerve injury. Retina 13(2):145-147

    Article  CAS  PubMed  Google Scholar 

  112. Minzenberg M, Berkelaar M, Bray G, McKerracher L (1995) Changes in retinal ganglion cell axons after optic nerve crush: neurofilament expression is not the sole determinant of calibre. Biochem Cell Biol 73(9-10):599-604

    CAS  PubMed  Google Scholar 

  113. Yoles E, Schwartz M (1998) Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 116(7):906-910

    CAS  PubMed  Google Scholar 

  114. Klocker N, Zerfowski M, Gellrich NC, Bahr M (2001) Morphological and functional analysis of an incomplete CNS fiber tract lesion: graded crush of the rat optic nerve. J Neurosci Meth 110(1):147-153

    Article  CAS  Google Scholar 

  115. Gellrich NC, Schimming R, Zerfowski M, Eysel UT (2002) Quantification of histological changes after calibrated crush of the intraorbital optic nerve in rats. Br J Ophthalmol 86(2):233-237

    Article  PubMed  Google Scholar 

  116. Allcutt D, Berry M, Sievers J (1984) A qualitative comparison of the reactions of retinal ganglion cell axons to optic nerve crush in neonatal and adult mice. Brain Res 318(2):231-240

    CAS  PubMed  Google Scholar 

  117. Misantone LJ, Gershenbaum M, Murray M (1984) Viability of retinal ganglion cells after optic nerve crush in adult rats. J Neurocytol 13(3):449-465

    Article  CAS  PubMed  Google Scholar 

  118. Barron KD, Dentinger MP, Krohel G, Easton SK, Mankes R (1986) Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. J Neurocytol 15(3):345-362

    Article  CAS  PubMed  Google Scholar 

  119. Buys YM, Trope GE, Tatton WG (1995) (-)-Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr Eye Res 14(2):119-126

    Article  CAS  PubMed  Google Scholar 

  120. Schmitt U, Sabel BA (1996) MK-801 reduces retinal ganglion cell survival but improves visual performance after controlled optic nerve crush. J Neurotrauma 13(12):791-800

    Article  CAS  PubMed  Google Scholar 

  121. Schuettauf F, Naskar R, Vorwerk CK, Zurakowski D, Dreyer EB (2000) Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Invest Ophthalmol Vis Sci 41(13):4313-4316

    CAS  PubMed  Google Scholar 

  122. Levkovitch Verbin H, Harris Cerruti C, Groner Y, Wheeler LA, Schwartz M, Yoles E (2000) RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection. Invest Ophthalmol Vis Sci 41(13):4169-4174

    CAS  PubMed  Google Scholar 

  123. Freeman EE, Grosskreutz CL (2000) The effects of FK506 on retinal ganglion cells after optic nerve crush. Invest Ophthalmol Vis Sci 41(5):1111-1115

    CAS  PubMed  Google Scholar 

  124. Naskar R, Quinto K, Romann I, Schuettauf F, Zurakowski D (2002) Phenytoin blocks retinal ganglion cell death after partial optic nerve crush. Exp Eye Res 74(6):747-752

    Article  CAS  PubMed  Google Scholar 

  125. Tezel G, Yang X, Yang J, Wax MB (2004) Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 996(2):202-212

    Article  CAS  PubMed  Google Scholar 

  126. Maeda K, Sawada A, Matsubara M, Nakai Y, Hara A, Yamamoto T (2004) A novel neuroprotectant against retinal ganglion cell damage in a glaucoma model and an optic nerve crush model in the rat. Invest Ophthalmol Vis Sci 45(3):851-856

    Article  PubMed  Google Scholar 

  127. Swanson KI, Schlieve CR, Lieven CJ, Levin LA (2005) Neuroprotective effect of sulfhydryl reduction in a rat optic nerve crush model. Invest Ophthalmol Vis Sci 46(10):3737-3741

    Article  PubMed  Google Scholar 

  128. Dieterich DC, Trivedi N, Engelmann R, Gundelfinger ED, Gordon-Weeks PR, Kreutz MR (2002) Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression, phosphorylation and distribution of cytoskeletal proteins. Eur J NeuroSci 15:1433-1443

    Article  PubMed  Google Scholar 

  129. Smith GG, Baird CD (1952) Survival time of retinal cells when deprived of their blood supply by increased intraocular pressure. Am J Ophthalmol 35(5:2):133-136

    CAS  PubMed  Google Scholar 

  130. Buchi ER, Suivaizdis I, Fu J (1991) Pressure-induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmologica 203(3):138-147

    Article  CAS  PubMed  Google Scholar 

  131. Hughes WF (1991) Quantitation of ischemic damage in the rat retina. Exp Eye Res 53(5):573-582

    Article  CAS  PubMed  Google Scholar 

  132. Li B, Pang I-H, Barnes G, McLaughlin M, Holt W (2002) A new method and device to induce transient retinal ischemia in the rat. Curr Eye Res 24(6):458-464

    Article  PubMed  Google Scholar 

  133. Stefansson E, Wilson CA, Schoen T, Kuwabara T (1988) Experimental ischemia induces cell mitosis in the adult rat retina. Invest Ophthalmol Vis Sci 29(7):1050-1055

    CAS  PubMed  Google Scholar 

  134. Mosinger JL, Olney JW (1989) Photothrombosis-induced ischemic neuronal degeneration in the rat retina. Exp Neurol 105(1):110-113

    Article  CAS  PubMed  Google Scholar 

  135. Cioffi GA, Orgul S, Onda E, Bacon DR, Van Buskirk EM (1995) An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. Curr Eye Res 14(12):1147-1153

    Article  CAS  PubMed  Google Scholar 

  136. Stokely ME, Brady ST, Yorio T (2002) Effects of endothelin-1 on components of anterograde axonal transport in optic nerve. Invest Ophthalmol Vis Sci 43(10):3223-3230

    PubMed  Google Scholar 

  137. Chauhan BC, LeVatte TL, Jollimore CA et al (2004) Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 45(1):144-152

    Article  PubMed  Google Scholar 

  138. Lau J, Dang M, Hockmann K, Ball AK (2006) Effects of acute delivery of endothelin-1 on retinal ganglion cell loss in the rat. Exp Eye Res 82:132-145

    Article  CAS  PubMed  Google Scholar 

  139. Wang X, baldridge WH, Chauhan BC (2008) Acute endothelin-1 application induces reversible fast axonal transport blockade in adult rat optic nerve. Invest Ophthalmol Vis Sci 49:961-967

    Article  PubMed  Google Scholar 

  140. Krishnamoorthy RR, Rao VR, Dauphin R, Prasanna G, Johnson C, Yorio T (2008) Role of the ETB receptor in retinal ganglion cell death in glaucoma. Can J Physiol Pharmacol 86:380-393

    Article  CAS  PubMed  Google Scholar 

  141. Noske W, Hensen J, Wiederholt M (1997) Endothelin-like immunoreactivity in aqueous humor of patients with primary open-angle glaucoma and cataract. Graefes Arch Clin Exp Ophthalmol 235(9):551-552

    Article  CAS  PubMed  Google Scholar 

  142. Tezel G, Kass MA, Kolker AE, Becker B, Wax MB (1997) Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J Glaucoma 6(2):83-89

    Article  CAS  PubMed  Google Scholar 

  143. Quigley HA, Guy J, Anderson DR (1979) Blockade of rapid axonal transport. Effect of intraocular pressure elevation in primate optic nerve. Arch Ophthalmol 97(3):525-531

    CAS  PubMed  Google Scholar 

  144. Johansson JO (1988) Inhibition and recovery of retrograde axoplasmic transport in rat optic nerve during and after elevated IOP in vivo. Exp Eye Res 46:223-227

    Article  CAS  PubMed  Google Scholar 

  145. Knox DL, Eagle RCJ, Green WR (2007) Optic nerve hydropic axonal degeneration and blocked retrograde axoplasmic transport: histopathologic features in human high-pressure secondary glaucoma. Arch Ophthalmol 125:347-353

    Article  PubMed  Google Scholar 

  146. Solomon AS, Kimron M, Holdengreber V et al (2003) Up-regulation of semaphorin expression in retina of glaucomatous rabbits. Graefes Arch Clin Exp Ophthalmol 241:673-681

    Article  CAS  PubMed  Google Scholar 

  147. Bunt-Milam AH, Dennis MB, Bensinger RE (1987) Optic nerve head axonal transport in rabbits with hereditary glaucoma. Exp Eye Res 44:537-551

    Article  CAS  PubMed  Google Scholar 

  148. Chihara E, Honda Y (1981) Analysis of orthograde fast axonal transport and nonaxonal transport along the optic pathway of albino rabbits during increased and decreased intraocular pressure. Exp Eye Res 32:229-239

    Article  CAS  PubMed  Google Scholar 

  149. Best M, Rabinovitz AZ, Masket S (1975) Experimental alpha-chymotrypsin glaucoma. Ann Ophthalmol 7:803-810

    CAS  PubMed  Google Scholar 

  150. Manni G, Lambiase A, Centofanti M et al (1996) Histopathological evaluation of retinal damage during intraocular hypertension in rabbit: involvement of ganglion cells and nerve fiber layer. Graefes Arch Clin Exp Ophthalmol 234(Suppl 1):S209-S213

    Article  PubMed  Google Scholar 

  151. Lorenzetti OJ (1970) Effects of corticosteroids on ocular dynamics in rabbits. J Pharmacol Exp Ther 175:763-772

    CAS  PubMed  Google Scholar 

  152. Knepper PA, Breen M, Weinstein HG, Blacik JL (1978) Intraocular pressure and glycosaminoglycan distribution in the rabbit eye: effect of age and dexamethasone. Exp Eye Res 27(5):567-575

    Article  CAS  PubMed  Google Scholar 

  153. Ticho U, Lahav M, Berkowitz S, Yoffe P (1979) Ocular changes in rabbits with corticosteroid-induced ocular hypertension. Br J Ophthalmol 63:646-650

    Article  CAS  PubMed  Google Scholar 

  154. Muller A, Villain M, Favreau B, Sandillon F, Privat A, Bonne C (1996) Differential effect of ischemia/reperfusion on pigmented and albino rabbit retina. J Ocul Pharmacol Ther 12:337-342

    Article  CAS  PubMed  Google Scholar 

  155. Okuno T, Oku H, Sugiyama T, Ikeda T (2006) Glutamate level in optic nerve head is increased by artificial elevation of intraocular pressure in rabbits. Exp Eye Res 82:465-470

    Article  CAS  PubMed  Google Scholar 

  156. Oku H, Sugiyama T, Kojima S, Watanabe T, Azuma I (1999) Experimental optic cup enlargement caused by endothelin-1-induced chronic optic nerve head ischemia. Surv Ophthalmol 44(Suppl 1):S74-S84

    Article  PubMed  Google Scholar 

  157. Sasaoka M, Taniguchi T, Shimazawa M, Ishida N, Shimazaki A, Hara H (2006) Intravitreal injection of endothelin-1 caused optic nerve damage following to ocular hypoperfusion in rabbits. Exp Eye Res 83:629-637

    Article  CAS  PubMed  Google Scholar 

  158. Jacobi S, Dubielzig RR (2008) Feline primary open angle glaucoma. Vet Ophthalmol 11:162-165

    Article  PubMed  Google Scholar 

  159. Shou T, Liu J, Wang W, Zhou Y, Zhao K (2003) Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci 44:3005-3010

    Article  PubMed  Google Scholar 

  160. Zhan GL, Miranda OC, Bito LZ (1992) Steroid glaucoma: corticosteroid-induced ocular hypertension in cats. Exp Eye Res 54:211-218

    Article  CAS  PubMed  Google Scholar 

  161. Chen H, Weber AJ (2001) BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci 42(5):966-974

    CAS  PubMed  Google Scholar 

  162. Weber AJ, Harman CD (2008) BDNF preserves the dendritic morphology of alpha and beta ganglion cells in the cat retina after optic nerve injury. Invest Ophthalmol Vis Sci 49:2456-2463

    Article  PubMed  Google Scholar 

  163. Watanabe M, Fukuda Y (2002) Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog Retin Eye Res 21(6):529-553

    Article  PubMed  Google Scholar 

  164. Khare PD, Loewen N, Teo W et al (2008) Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther 16:97-106

    Article  CAS  PubMed  Google Scholar 

  165. Gelatt KN, MacKay EO (2004) Prevalence of the breed-related glaucomas in pure-bred dogs in North America. Vet Ophthalmol 7:97-111

    Article  PubMed  Google Scholar 

  166. Gelatt KN, Gum GG (1981) Inheritance of primary glaucoma in the beagle. Am J Vet Res 42:1691-1693

    CAS  PubMed  Google Scholar 

  167. Samuelson DA, Gum GG, Gelatt KN (1989) Ultrastructural changes in the aqueous outflow apparatus of beagles with inherited glaucoma. Invest Ophthalmol Vis Sci 30:550-561

    CAS  PubMed  Google Scholar 

  168. Brooks DE, Strubbe DT, Kubilis PS, MacKay EO, Samuelson DA, Gelatt KN (1995) Histomorphometry of the optic nerves of normal dogs and dogs with hereditary glaucoma. Exp Eye Res 60:71-89

    Article  CAS  PubMed  Google Scholar 

  169. Brooks DE, Samuelson DA, Gelatt KN, Smith PJ (1989) Morphologic changes in the lamina cribrosa of beagles with primary open-angle glaucoma. Am J Vet Res 50:936-941

    CAS  PubMed  Google Scholar 

  170. Gelatt KN, Mackay EO (1998) The ocular hypertensive effects of topical 0.1% dexamethasone in beagles with inherited glaucoma. J Ocul Pharmacol Ther 14:57-66

    Article  CAS  PubMed  Google Scholar 

  171. Källberg ME, Brooks DE, Gelatt KN, Garcia-Sanchez GA, Szabo NJ, Lambrou GN (2007) Endothelin-1, nitric oxide, and glutamate in the normal and glaucomatous dog eye. Vet Ophthalmol 10(Suppl 1):46-52

    Article  PubMed  Google Scholar 

  172. MacKay EO, Kallberg ME, Barrie KP et al (2008) Myocilin protein levels in the aqueous humor of the glaucomas in selected canine breeds. Vet Ophthalmol 11:234-241

    Article  CAS  PubMed  Google Scholar 

  173. MacKay EO, Kallberg ME, Gelatt KN (2008) Aqueous humor myocilin protein levels in normal, genetic carriers, and glaucoma Beagles. Vet Ophthalmol 11:177-185

    Article  CAS  PubMed  Google Scholar 

  174. Hart H, Samuelson DA, Tajwar H et al (2007) Immunolocalization of myocilin protein in the anterior eye of normal and primary open-angle glaucomatous dogs. Vet Ophthalmol 10(Suppl 1):28-37

    Article  PubMed  Google Scholar 

  175. Borras T, Rowlette LL, Tamm ER, Gottanka J, Epstein DL (2002) Effects of elevated intraocular pressure on outflow facility and TIGR/MYOC expression in perfused human anterior segments. Invest Ophthalmol Vis Sci 43:33-40

    PubMed  Google Scholar 

  176. Ruiz-Ederra J, García M, Hernández M et al (2005) The pig eye as a novel model of glaucoma. Exp Eye Res 81:561-569

    Article  CAS  PubMed  Google Scholar 

  177. Balaratnasingam C, Morgan WH, Bass L, Matich G, Cringle SJ, Yu DY (2007) Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Invest Ophthalmol Vis Sci 48:3632-3644

    Article  PubMed  Google Scholar 

  178. Blumenröder S, Augustin AJ, Koch FH (1997) The influence of intraocular pressure and systemic oxygen tension on the intravascular pO2 of the pig retina as measured with phosphorescence imaging. Surv Ophthalmol 42(suppl 1):S118-S126

    PubMed  Google Scholar 

  179. Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570:325-338

    CAS  PubMed  Google Scholar 

  180. Thornton IL, Dupps WJ, Roy AS, Krueger RR (2009) Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking. Invest Ophthalmol Vis Sci 50:1227-1233

    Article  PubMed  Google Scholar 

  181. Luo X, Heidinger V, Picaud S et al (2001) Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 42(5):1096-1106

    CAS  PubMed  Google Scholar 

  182. Wehrwein E, Thompson SA, Coulibaly SF, Linn DM, Linn CL (2004) Acetylcholine protection of adult pig retinal ganglion cells from glutamate-induced excitotoxi­city. Invest Ophthalmol Vis Sci 45(5):1531-1543

    Article  PubMed  Google Scholar 

  183. Gerometta R, Podos SM, Candia OA et al (2004) Steroid-induced ocular hypertension in normal cattle. Arch Ophthalmol 122:1492-1497

    Article  CAS  PubMed  Google Scholar 

  184. Gerometta R, Podos SM, Danias J, Candia OA (2009) Steroid-induced ocular hypertension in normal sheep. Invest Ophthalmol Vis Sci 50:669-673

    Article  PubMed  Google Scholar 

  185. Gerometta R, Spiga MG, Candia OA, Borras T (2009) Treatment of steroid-induced ocular hypertension by inducible gene transfer of MMP1 in sheep. ARVO Abstract 2009:5722

    Google Scholar 

  186. Reigada D, Lu W, Zhang M, Mitchell CH (2008) Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 157:396-404

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iok-Hou Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pang, IH., Clark, A.F. (2010). Nonprimate Models for Glaucoma Retinopathy and Optic Neuropathy. In: Pang, IH., Clark, A. (eds) Animal Models for Retinal Diseases. Neuromethods, vol 46. Humana Press. https://doi.org/10.1007/978-1-60761-541-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-541-5_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-540-8

  • Online ISBN: 978-1-60761-541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics