Skip to main content

Two-Stage Testing Strategies for Genome-Wide Association Studies in Family-Based Designs

  • Protocol
  • First Online:
Statistical Methods in Molecular Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 620))

Abstract

The analysis of genome-wide association studies (GWAS) poses statistical hurdles that have to be handled efficiently in order for the study to be successful. The two largest impediments in the analysis phase of the study are the multiple comparisons problem and maintaining robustness against confounding due to population admixture and stratification. For quantitative traits in family-based designs, Van Steen (1) proposed a two-stage testing strategy that can be considered a hybrid approach between family-based and population-based analysis. By including the population-based component into the family-based analysis, the Van Steen algorithm maximizes the statistical power, while at the same time, maintains the original robustness of family-based association tests (FBATs) (2–4). The Van Steen approach consists of two statistically independent steps, a screening step and a testing step. For all genotyped single nucleotide polymorphisms (SNPs), the screening step examines the evidence for association at a population-based level. Based on support for a potential genetic association from the screening step, the SNPs are prioritized for testing in the next step, where they are analyzed with a FBAT (3). By exploiting population-based information in the screening step that is not utilized in family-based association testing step, the two steps are statistically independent. Therefore, the use of the population-based data for the purposes of screening does not bias the FBAT statistic calculated in the testing step. Depending on the trait type and the ascertainment conditions, Van Steen-type testing strategies can achieve statistical power levels that are comparable to those of population-based studies with the same number of probands. In this chapter, we review the original Van Steen algorithm, its numerous extensions, and discuss its advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Steen, K., McQueen, M., Herbert, A., Raby, B., Lyon, H., DeMeo, D., Murphy, A., Su, J., Datta, S., Rosenow, C., et al. (2005). Genomic screening and replication using the same data set infamily-based association testing. Nature Genetics, 37, 683–691.

    Article  PubMed  Google Scholar 

  2. Spielman, R., McGinnis, R., and Ewens, W. (1993). Transmisson test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDm). American Journal of Human Genetics, 52, 506–516.

    PubMed  CAS  Google Scholar 

  3. Laird, N., Horvath, S., and Xu, X. (2000). Implementing a unified approach to family-based tests of association. Genetic Epidemiology, 19, S36.

    Google Scholar 

  4. Laird, N. and Lange, C. (2006). Family-based designs in the age of large-scale gene-association studies. Nature Review Genetics, 7(5), 385–94.

    Article  CAS  Google Scholar 

  5. The International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 427, 1299–1320.

    Google Scholar 

  6. The International HapMap Consortium. (2007). The international hapmap consortium: A second generation human haplotype map of over 3.1 million snps. Nature, 449, 851–861.

    Google Scholar 

  7. Matsuzaki, H., Dong, S., Loi, H., Di, X., Liu, G., Hubbell, E., Law, J., Berntsen, T., Chadha, M., Hui, H., et al. (2004). Genotyping over 100, 000 snps on a pair of oligonucleotide arrays. Nature Methods, 11, 109–111.

    Article  Google Scholar 

  8. Di, X., Matsuzaki, H., Webster, T. A., Hubbell, E., Liu, G., Dong, S., Bartell, D., Huang, J., Chiles, R., Yang, G., et al. (2005). Dynamic model based algorithms for screening and genotyping over 100 k snps on oligonucleotide microarrays. Bioinformatics, 21, 1958–1963.

    Article  PubMed  CAS  Google Scholar 

  9. Gunderson, K., Kuhn, K., Steemers, F., Ng, P., Murray, S., and Shen, R. (2006). Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics, 7, 641–648.

    Article  PubMed  CAS  Google Scholar 

  10. Wadma, M. (2006). The chips are down. Nature Digest, 444, 256–257.

    Google Scholar 

  11. Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., Henning, A. K., Sangiovanni, J. P., Mane, S. M., Mayne, S. T., et al. (2005). Complement factor h polymorphism in age-related macular degeneration. Science, 308, 385–389.

    Article  PubMed  CAS  Google Scholar 

  12. Herbert, A., Gerry, N., McQueen, M., Heid, I., Pfeufer, A., Illig, T., Wichmann, E.-H., Meitinger, T., Hunter, D., Hu, F., et al. (2006). Genetic variation near INSIG2 is a common determinant of obesity in western europeans and african americans. Science, 312, 279–283.

    Article  PubMed  CAS  Google Scholar 

  13. Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M., Elliott, K. S., Lango, H., Timpson, N. J., Perry, J. R., Rayner, N. W., Freathy, R. M., et al. (2007). Replication of genome-wide association signals in uk samples reveals risk loci for type 2 diabetes. Science, 316, 1336–1341.

    Article  PubMed  CAS  Google Scholar 

  14. Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature, 447, 661–78.

    Google Scholar 

  15. Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., Struewing, J. P., Morrison, J., Field, H., Luben, R., et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  16. Buch, S., Schafmayer, C., Volzke, H., Becker, C., Franke, A., von Eller-Eberstein, H., Kluck, C., Bassmann, I., Brosch, M., Lammert, F., et al. (2007). A genome-wide association scan identifies the hepatic cholesterol transporter abcg8 as a susceptibility factor for human gallstone disease. Nature Genetics, 39, 995–999.

    Article  PubMed  CAS  Google Scholar 

  17. Bierut, L. J., Madden, P. A., Breslau, N., Johnson, E. O., Hatsukami, D., Pomerleau, O. F., Swan, G. E., Rutter, J., Bertelsen, S., Fox, L., et al. (2007). Novel genes identified in a high-density genome wide association study for nicotine dependence. Human Molecular Genetics, 16, 24–35.

    Article  PubMed  CAS  Google Scholar 

  18. Zanke, B. W., Greenwood, C. M., Rangrej, J., Kustra, R., Tenesa, A., Farrington, S. M., Prendergast, J., Olschwang, S., Chiang, T., Crowdy, E., et al. (2007). Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nature Genetics, 39, 989–994.

    Article  PubMed  CAS  Google Scholar 

  19. Yeager, M., Orr, N., Hayes, R. B., Jacobs, K. B., Kraft, P., Wacholder, S., Minichiello, M. J., Fearnhead, P., Yu, K., Chatterjee, N., et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genetics, 39, 645–649.

    Article  PubMed  CAS  Google Scholar 

  20. Winkelmann, J., Schormair, B., Lichtner, P., Ripke, S., Xiong, L., Jalilzadeh, S., Fulda, S., Putz, B., Eckstein, G., Hauk, S., et al. (2007). Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nature Genetics, 39, 1000–1006.

    Article  PubMed  CAS  Google Scholar 

  21. Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., Boutin, P., Vincent, D., Belisle, A., Hadjadj, S., et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445, 881–885.

    Article  PubMed  CAS  Google Scholar 

  22. Frayling, T., Timpson, N., Weedon, M., Zeggini, E., Freathy, R., Lindgren, C., Perry, J., Elliott, K., Lango, H., Rayner, N., et al. (2007). A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 316, 889.

    Article  PubMed  CAS  Google Scholar 

  23. Saxena, R., Voight, B., Lyssenko, V., Burtt, N., de Bakker, P., Chen, H., Roix, J., Kathiresan, S., Hirschhorn, J., Daly, M., et al. (2007). Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science, 316, 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  24. Scott, L., Mohlke, K., Bonnycastle, L., Willer, C., Li, Y., Duren, W., Erdos, M., Stringham, H., Chines, P., Jackson, A., et al. (2007). A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Science, 316, 1341.

    Article  PubMed  CAS  Google Scholar 

  25. Lettre, G., Jackson, A., Gieger, C., Schumacher, F., Berndt, S., Sanna, S., Eyheramendy, S., Voight, B., Butler, J., Guiducci, C., et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nature, 200, 8.

    Google Scholar 

  26. Neale, B., Lasky-Su, J., Anney, R., Franke, B., Zhou, K., Maller, J., Vasquez, A., Asherson, P., Chen, W., Banaschewski, T., et al. (2008). Genome-wide association scan of attention deficit hyperactivity disorder. American Journal Medical Genetics B Neuropsychiatric Genetics, 147, 1377–1344.

    Google Scholar 

  27. Lasky-Su, J., Anney, R., Neale, B., Franke, B., Zhou, K., Maller, J., Vasquez, A., Chen, W., Asherson, P., Buitelaar, J., et al. (2008). Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. American Journal Medical Genetics B Neuropsychiatric Genetics, 147, 1355–1358.

    Article  Google Scholar 

  28. Kathiresan, S., Willer, C., Peloso, G., Demissie, S., Musunuru, K., Schadt, E., Kaplan, L., Bennett, D., Li, Y., Tanaka, T., et al. (2009). Common variants at 30 loci contribute to polygenic dyslipidemia. Nature Genetics, 41, 56–65.

    Article  PubMed  CAS  Google Scholar 

  29. Lasky-Su, J., Lyon, H., Emilsson, V., Heid, I., Molony, C., Raby, B., Lazarus, R., Klanderman, B., Soto-Quiros, M., Avila, L., et al. (2008). On the Replication of Genetic Associations: Timing Can Be Everything! The American Journal of Human Genetics, 82, 849–858.

    Article  CAS  Google Scholar 

  30. Lasky-Su, J., Neale, B., Franke, B., Anney, R., Zhou, K., Maller, J., Vasquez, A., Chen, W., Asherson, P., Buitelaar, J., et al. (2008). Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. American Journal Medical Genetics B Neuropsychiatric Genetics, 147, 1345–1354.

    Article  Google Scholar 

  31. Bertram, L., Lange, C., Mullin, K., Parkinson, M., Hsiao, M., Hogan, M., Schjeide, B., Hooli, B., DiVito, J., Ionita, I., et al. (2008). Genome-wide Association Analysis Reveals Putative Alzheimer’s Disease Susceptibility Loci in Addition to APOE. American Journal of Human Genetics, 83, 623–632.

    Article  PubMed  CAS  Google Scholar 

  32. Satagopan, J. and Elston, R. (2003). Optimal two-stage genotyping in population-based association studies. Genetic Epidemiology, 25, 149–157.

    Article  PubMed  Google Scholar 

  33. Satagopan, J., Venkatraman, E., and Begg, C. (2004). Two-stage designs for gene-disease association studies with sample size contraints. Biometrics, 60, 589–597.

    Article  PubMed  Google Scholar 

  34. Satagopan, J., Verbel, D., Venkatraman, E., Offit, K., and Begg, C. (2004). Two-stage designs for gene-disease association studies. Biometrics, 58, 163–170.

    Article  Google Scholar 

  35. Thomas, D., Xie, R., and Gebregziabher, M. (2004). Two-stage sampling designs for gene association studies. Genetic Epidemiology, 27, 401–414.

    Article  PubMed  Google Scholar 

  36. Hirschhorn, J. and Daly, M. (2005). Genome-wide association studies for common diseases and complex traits. Nature Review Genetics, 6, 95–108.

    Article  CAS  Google Scholar 

  37. Evangelou, E., Maraganore, D., and Ioannidis, J. (2007). Meta-analysis in genome-wide association datasets: Strategies and application in parkinson disease. PLoS ONE, 2, e196.

    Google Scholar 

  38. Ioannidis, J. P., Patsopoulos, N. A., and Evangelou, E. (2007). Heterogeneity in meta-analyses of genome-wide association investigations. PLoS ONE, 2, e841.

    Google Scholar 

  39. Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., Erdos, M. R., Stringham, H. M., Chines, P. S., Jackson, A. U., et al. (2007). A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science, 316, 1341–1345.

    Article  PubMed  CAS  Google Scholar 

  40. Saxena, R., Voight, B. F., Lyssenko, V., Burtt, N. P., de Bakker, P. I., Chen, H., Roix, J. J., Kathiresan, S., Hirschhorn, J. N., Daly, M. J., et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 316, 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  41. Spielman, R. and Ewens, W. (1998). A sibship test for linkage in the presence of association. American Journal of Human Genetics, 62, 450–458.

    Article  PubMed  CAS  Google Scholar 

  42. Martin, E., Bass, M., and Kaplan, N. (2001). Correcting for a potential bias in the pedigree disequilibrium test. American Journal of Human Genetics, 68, 1065–1067.

    Article  PubMed  CAS  Google Scholar 

  43. Monks, S. and Kaplan, N. (2000). Removing the sampling restrictions from family-based tests of association for a quantitative-trait locus. American Journal Human Genetics, 66, 576–592.

    Article  CAS  Google Scholar 

  44. Chen, W. and Abecasis, G. (2007). Family-based association tests for genomewide association scans. American Journal of Human Genetics, 81, 913–926.

    Article  PubMed  CAS  Google Scholar 

  45. Aulchenko, Y., de Koning, D., and Haley, C. (2007). Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics, 177, 577.

    Article  PubMed  CAS  Google Scholar 

  46. Macgregor, S. (2008). Optimal two-stage testing for family-based genome-wide association studies. American Journal of Human Genetics, 82, 797–799.

    Article  PubMed  CAS  Google Scholar 

  47. Devlin, B. and Roeder, K. (1999). Genomic control for association studies. Biometrics, 55, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  48. Bacanu, S., Devlin, B., and Roeder, K. (2000). The power of genomic control. American Journal of Human Genetics, 66, 1933–1944.

    Article  PubMed  CAS  Google Scholar 

  49. Devlin, B., Roeder, K., and Wasserman, L. (2001). Genomic control, a new approach to genetic-based association studies. Theoretical Population Biology, 60, 155–166.

    Article  PubMed  CAS  Google Scholar 

  50. Price, A., Patterson, N., Plenge, R., Weinblatt, M., Shadick, N., and Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904–909.

    Article  PubMed  CAS  Google Scholar 

  51. Ionita-Laza, I., McQueen, M., Laird, N., and Lange, C. (2007). Genomewide weighted hypothesis testing in family-based association studies, with an application to a 100 k scan. American Journal of Human Genetics, 81, 607–14.

    Article  PubMed  CAS  Google Scholar 

  52. Feng, T., Zhang, S., and Sha, Q. (2007). Two-stage association tests for genome-wide association studies based on family data with arbitrary family structure. European Journal of Human Genetics, 15, 1169–1175.

    Article  PubMed  CAS  Google Scholar 

  53. Murphy, A., Weiss, S., and Lange, C. (2008). Screening and replication using the same data set: Testing strategies for family-based studies in which All probands are affected. PLoS Genetics, 41(9), e1000197

    Google Scholar 

  54. Lange, C., DeMeo, D., Silverman, E., Weiss, S., and Laird, N. (2003). Using the noninformative families in family-based association tests: A powerful new testing strategy. American Journal of Human Genetics, 79, 801–811.

    Article  Google Scholar 

  55. Lange, C., Lyon, H., DeMeo, D., Raby, B., Silverman, E., and Weiss, S. (2003). A new powerful non-parametric two-stage approach for testing multiple phenotypes in family-based association studies. Human Heredity, 56, 10–17.

    Article  PubMed  Google Scholar 

  56. Jiang, H., Harrington, D., Raby, B., Bertram, L., Blacker, D., Weiss, S., and C., L. (2006). Family-based association test for time-to-onset data with time-dependent differences between the hazard functions. Genetic Epidemiology, 30(2), 124–132.

    Article  PubMed  Google Scholar 

  57. Degnan, J., Lasky-Su, J., Raby, B., Xu, M., Molony, C., Schadt, E., and Lange, C. (2008). Genomics and genome-wide association studies: An integrative approach to expression QTL mapping. Genomics, 92, 129–133.

    Article  PubMed  CAS  Google Scholar 

  58. Rabinowitz, D. and Laird, N. (2000). A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Humman Heredity, 50, 211–223.

    CAS  Google Scholar 

  59. Clayton, D. and Jones, H. (1999). Transmission/disequilibrium tests for extended marker haplotypes. American Journal of Human Genetics, 65, 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  60. Lunetta, K., Faraone, S., Biederman, J., and Laird, N. (2000). Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. American Journal of Human Genetics, 66, 605–614.

    Article  PubMed  CAS  Google Scholar 

  61. Whittaker, J. and Lewis, C. (1998). Power comparisons of the transmission/disequilibrium test and sibtransmission/disequilibrium-test statistics. American Journal of Human Genetics, 65,578–580.

    Article  Google Scholar 

  62. Lange, C., DeMeo, D., and Laird, N. (2002). Power and design considerations for a general class of family-based association tests: Quantitative traits. American Journal of Human Genetics, 71, 1330–1341.

    Article  PubMed  CAS  Google Scholar 

  63. Lange, C. and Laird, N. (2002). On a general class of conditional tests for family-based association studies in genetics: the asymptotic distribution, the conditional power and optimality considerations. Genetic Epidemiology, 23, 165–180.

    Article  PubMed  Google Scholar 

  64. Mokliatchouk, O., Blacker, D., and Rabinowitz, D. (2001). Association tests for traits with variable age at onset. Human Heredity, 51, 46–53.

    Article  PubMed  CAS  Google Scholar 

  65. Horvath, S., Xu, X., and Laird, N. (2001). The family based association test method: strategies for studying general genotype-phenotype associations. European Journal of Human Genetics, 9, 301–306.

    Article  PubMed  CAS  Google Scholar 

  66. Lange, C., Blacker, D., and Laird, N. (2004). Family-based association tests for survival and times-to-onset analysis. Statistics in Medicine, 23, 179–189.

    Article  PubMed  Google Scholar 

  67. Lange, C., Silverman, E., Xu, X., Weiss, S., and Laird, N. (2003a). A multivariate family-based association test using generalized estimating equations: {FBAT-GEE}. Biostatistics, 4, 195–206.

    Article  PubMed  Google Scholar 

  68. Lange, C., Van Steen, K., Andrew, T., Lyon, H., DeMeo, D., Murphy, A., Silverman, E., A, M., Weiss, S., and Laird, N. (2004). A family-based association test for repeatedly measured quantitative traits adjusting for unknown environmental and/or polygenic effects. Statistical Applications in Genetics and Molecular Biology: Vol. 3: No. 1, Article 17. http://www.bepress.com/sagmb/vol3/iss1/art17.

  69. Murphy, A., Blacker, D., and Lange, C. (2004). Imputing missing phenotypes: A new fbat-statistic. Statistical Modelling, 4, 96–100.

    Google Scholar 

  70. Murphy, A., Van Steen, K., and Lange, C. (2004). On missing phenotype data in multivariate family based association tests: imputation strategies based on the em-algorithm, the da-algorithm and the conditional mean model. Far East Journal of Theoretical Statistics, 13, 175–188.

    Google Scholar 

  71. Schaid, D. and Sommer, S. (1994). Comparison of statistics for candidate-gene association studies using cases and parents. American Journal of Human Genetics, 55, 402–409.

    PubMed  CAS  Google Scholar 

  72. Fulker, D., Cherny, S., Sham, P., and Hewit, J. (1999). Combined linkage and association sib-pair analysis for quantitative traits. Encyclopedia of Human Genetics and Genetic Epidemiology, 64, 259–267.

    CAS  Google Scholar 

  73. Lange, C., DeMeo, D., Silverman, E., Weiss, S., and Laird, N. (2004). PBAT: tools for family-based association studies. American Journal of Human Genetics, 74, 367–369.

    Article  PubMed  Google Scholar 

  74. Van Steen, K. and Lange, C. (2005). PBAT: a comprehensive software package for genome-wide association analysis of complex family based studies. Human Genomics, 2, 67–69.

    Article  PubMed  Google Scholar 

  75. Hoffmann, T. and Lange, C. (2006). P2BAT: a massive parallel implementation of pbat for genome-wide association studies in R. Bioinformatics., 22(24), 3103–3105.

    Article  PubMed  CAS  Google Scholar 

  76. McQueen, M., Weiss, S., Laird, N., and Lange, C. (2007). On the parsing of statistical information in family-based association testing. Nature Genetics, 39, 281–282.

    Article  PubMed  CAS  Google Scholar 

  77. Rosskopf, D., Bornhorst, A., Rimmbach, C., Schwahn, C., Kayser, A., Kruger, A., Tessmann, G., Geissler, I., Kroemer, H., and Volzke, H. (2007). Comment on “a common genetic variant is associated with adult and childhood obesity”. Science, 315, 187.

    Article  PubMed  CAS  Google Scholar 

  78. Hall, D., Rahman, T., Avery, P., and Keavney, B. (2006). INSIG-2 promoter polymorphism and obesity related phenotypes: association study in 1428 members of 248 families. BMC Medical Genetics, 7, 83.

    Article  PubMed  Google Scholar 

  79. Dina, C., Meyre, D., Samson, C., Tichet, J., Marre, M., Jouret, B., Charles, M., Balkau, B., and Froguel, P. (2007). Comment on “a common genetic variant is associated with adult and childhood obesity”. Science, 315, 187.

    Article  PubMed  CAS  Google Scholar 

  80. Loos, R., Barroso, I., O’Rahilly, S., and Wareham, N. (2007). Comment on “a common genetic variant is associated with adult and childhood obesity”. Science, 315, 187.

    Article  PubMed  CAS  Google Scholar 

  81. Lyon, H., Emilsson, V., Hinney, A., Heid, I., Lasky-Su, J., Zhu, X., Thorleifsson, G., Gunnarsdottir, S., Walters, G., Thorsteinsdottir, U., et al. (2007). The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genetics, 3, e61.

    Google Scholar 

  82. Smith, A., Cooper, J., Li, L., and Humphries, S. (2007). INSIG2 gene polymorphism is not associated with obesity in caucasian, afro-caribbean and indian subjects. International Journal of Obesity, 31, 1753–1755.

    Google Scholar 

  83. Kumar, J., Sunkishala, R., Karthikeyan, G., and Sengupta, S. (2007). The common genetic variant upstream of INSIG2 gene is not associated with obesity in indian population. Clinical Genetics, 71, 415–418.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Murphy, A., T. Weiss, S., Lange, C. (2010). Two-Stage Testing Strategies for Genome-Wide Association Studies in Family-Based Designs. In: Bang, H., Zhou, X., van Epps, H., Mazumdar, M. (eds) Statistical Methods in Molecular Biology. Methods in Molecular Biology, vol 620. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-580-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-580-4_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-578-1

  • Online ISBN: 978-1-60761-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics