Skip to main content

Surface Plasmon Resonance Spectroscopy in Determination of the Interactions Between Amyloid β Proteins (Aβ) and Lipid Membranes

  • Protocol
  • First Online:
Surface Plasmon Resonance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 627))

Abstract

Surface plasmon resonance (SPR) spectroscopy is emerging as a useful tool for determination of molecular interactions in real time. Studies on the molecular pathogenesis of amyloidoses have shown that the plasma membrane plays an important role in amyloidogenesis and cytotoxicity induced by amyloidogenic proteins. By immobilizing lipid bilayers on a sensor chip surface, SPR spectroscopy has been employed to examine the binding of amyloidogenic proteins, such as amyloid β protein (Aβ), to a variety of lipid membranes, and it provided new insights into the molecular interactions between these amyloidogenic proteins and membranes. In this chapter, we describe the application of SPR spectroscopy to the determination of the binding of Aβ to lipid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou, X., Mechler, A., Martin, L. L., Aguilar, M. I., and Small, D. H. (2008) Cholesterol and anionic phospholipids increase the binding of amyloidogenic transthyretin to lipid membranes. Biochim. Biophys. Acta. 1778, 198–205.

    Article  PubMed  CAS  Google Scholar 

  2. Kakio, A., Nishimoto, S., Kozutsumi, Y., and Matsuzaki, K. (2003) Formation of a membrane-active form of amyloid beta-protein in raft-like model membranes. Biochem Biophys. Res. Commun. 303, 514–18.

    Article  PubMed  CAS  Google Scholar 

  3. Critchley, P., Kazlauskaite, J., Eason, R., and Pinheiro, T. J. (2004) Binding of prion proteins to lipid membranes. Biochem. Biophys. Res. Commun. 313, 559–67.

    Article  PubMed  CAS  Google Scholar 

  4. Elfrink, K., Nagel-Steger, L., and Riesner, D. (2007) Interaction of the cellular prion protein with raft-like lipid membranes. Biol. Chem. 388, 79–89.

    Article  PubMed  CAS  Google Scholar 

  5. Yip, C. M., Darabie, A. A., and McLaurin, J. (2002) Abeta 42-peptide assembly on lipid bilayers. J. Mol. Biol. 318, 97–107.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao, H., Tuominen, E. K., and Kinnunen, P. K. (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43, 10302–07.

    Article  PubMed  CAS  Google Scholar 

  7. Yip, C. M., Elton, E. A., Darabie, A. A., Morrison, M. R., and McLaurin, J. (2001) Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. J. Mol. Biol. 311, 723–34.

    Article  PubMed  CAS  Google Scholar 

  8. Rymer, D. L., and Good, T. A. (2000) The role of prion peptide structure and aggregation in toxicity and membrane binding. J. Neurochem. 75, 2536–45.

    Article  PubMed  CAS  Google Scholar 

  9. Hou, X., Richardson, S. J., Aguilar, M. I., and Small, D. H. (2005) Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry 44, 11618–27.

    Article  PubMed  CAS  Google Scholar 

  10. Subasinghe, S., Unabia, S., Barrow, C. J., Mok, S. S., Aguilar, M. I., and Small, D. H. (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J. Neurochem. 84, 471–79.

    Article  PubMed  CAS  Google Scholar 

  11. Gorbenko, G. P., and Kinnunen, P. K. (2006) The role of lipid-protein interactions in amyloid-type protein fibril formation. Chem. Phys. Lipids 141, 72–82.

    Article  PubMed  CAS  Google Scholar 

  12. Chauhan, A., Ray, I., and Chauhan, V. P. (2000) Interaction of amyloid beta-protein with anionic phospholipids: possible involvement of Lys28 and C-terminus aliphatic amino acids. Neurochem. Res. 25, 423–29.

    Article  PubMed  CAS  Google Scholar 

  13. Morillas, M., Swietnicki, W., Gambetti, P., and Surewicz, W. K. (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J. Biol. Chem. 274, 36859–65.

    Article  PubMed  CAS  Google Scholar 

  14. Hou, X., Aguilar, M. I., and Small, D. H. (2007) Transthyretin and familial amyloidotic polyneuropathy: clues to the molecular mechanism of neurodegeneration in amyloidosis. FEBS J. 274, 1637–50.

    Article  PubMed  CAS  Google Scholar 

  15. Demuro, A., Mina, E., Kayed, R., Milton, S. C., Parker, I., and Glabe, C. G. (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280, 17294–300.

    Article  PubMed  CAS  Google Scholar 

  16. Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K. (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41, 7385–90.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, S. S., Rymer, D. L., and Good, T. A. (2001) Reduction in cholesterol and sialic acid content protects cells from the toxic effects of beta-amyloid peptides. J. Biol. Chem. 276, 42027–34.

    Article  PubMed  CAS  Google Scholar 

  18. Aguilar, M. I., and Small, D. H. (2005) Surface plasmon resonance for the analysis of beta-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotox. Res. 7, 17–27.

    Article  PubMed  CAS  Google Scholar 

  19. Markey, F. (2000) Principles of Surface Plasmon Resonance (Nagata, K., and Handa, H. (Eds.)). pp. 13–22, Springer-Verlag, Tokyo.

    Google Scholar 

  20. Kretschmann, E. (1971) Die Bestimmung optischer Konstanten von metallen durch Anregung von Oberflachenplasmaschwingungen. Z. Phys. 241, 313–24.

    Article  CAS  Google Scholar 

  21. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Ronnberg, I., et al. (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11, 620–27.

    PubMed  CAS  Google Scholar 

  22. Hashimoto, S. (2000) Principles of BIACORE (Nagata, K., and Handa, H. (Eds.)). pp. 23–32, Springer-Verlag, Tokyo.

    Google Scholar 

  23. Stenberg, E., Persson, B., Roos, H., and Urbaniczky, C. (1990) Quantitative determination of surface concentration of protein with surface plasmon resonance by using radiolabeled proteins. J. Colloid Interface Sci. 143, 513–26.

    Article  Google Scholar 

  24. Cooper, M. A., Hansson, A., Lofas, S., and Williams, D. H. (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal. Biochem. 277, 196–205.

    Article  PubMed  CAS  Google Scholar 

  25. Plant, A. L., Brigham-Burke, M., Petrella, E. C., and O’Shannessy, D. J. (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal. Biochem. 226, 342–48.

    Article  PubMed  CAS  Google Scholar 

  26. Besenicar, M., Macek, P., Lakey, J. H., and Anderluh, G. (2006) Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids 141, 169–78.

    Article  PubMed  CAS  Google Scholar 

  27. McDonnell, J. M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5, 572–77.

    Article  PubMed  CAS  Google Scholar 

  28. Mozsolits, H., and Aguilar, M. I. (2002) Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers 66, 3–18.

    Article  PubMed  CAS  Google Scholar 

  29. Cooper, M. A. (2004) Advances in membrane receptor screening and analysis. J. Mol. Recognit. 17, 286–315.

    Article  PubMed  CAS  Google Scholar 

  30. Mozsolits, H., Thomas, W. G., and Aguilar, M. I. (2003) Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. J. Pept. Sci. 9, 77–89.

    Article  PubMed  CAS  Google Scholar 

  31. Ariga, T., Kobayashi, K., Hasegawa, A., Kiso, M., Ishida, H., and Miyatake, T. (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch. Biochem. Biophys. 388, 225–30.

    Article  PubMed  CAS  Google Scholar 

  32. Inaba, S., Okada, T., Konakahara, T., and Kodaka, M. (2005) Specific binding of amyloid-b-protein to IMR-32 neuroblastoma cell. J. Pept. Res. 65, 485–90.

    Article  PubMed  CAS  Google Scholar 

  33. Kremer, J. J., and Murphy, R. M. (2003) Kinetics of adsorption of beta-amyloid peptide Abeta(1–40) to lipid bilayers. J. Biochem. Biophys. Methods 57, 159–69.

    Article  PubMed  CAS  Google Scholar 

  34. Hubbard, A. L., Wall, D. A., and Ma, A. (1983) Isolation of rat hepatocyte plasma membranes. I. Presence of three major domains. J. Biol. Chem. 96, 217–29.

    CAS  Google Scholar 

  35. Jarrett, J. T., and Lansbury, P. T. Jr. (1993) Seeding “one-dimensional crystallization” of amyloid. A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–58.

    Article  PubMed  CAS  Google Scholar 

  36. Erb, E. M., Chen, X., Allen, S., Roberts, C. J., Tendler, S. J., Davies, M. C., and Forsen, S. (2000) Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal. Biochem. 280, 29–35.

    Article  PubMed  CAS  Google Scholar 

  37. Anderluh, G., Besenicar, M., Kladnik, A., Lakey, J. H., and Macek, P. (2005) Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin. Anal. Biochem. 344, 43–52.

    Article  PubMed  CAS  Google Scholar 

  38. Henriques, S. T., Pattenden, L. K., Aguilar, M. I., and Castanho, M. A. (2008) PrP(106-126) does not interact with membranes under physiological conditions. Biophys. J. Epub, doi:10.1529/biophysj.1108.131458.

    Google Scholar 

  39. Mozsolits, H., Wirth, H. J., Werkmeister, J., and Aguilar, M. I. (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim. Biophys. Acta 1512, 64–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hou, X., Small, D.H., Aguilar, MI. (2010). Surface Plasmon Resonance Spectroscopy in Determination of the Interactions Between Amyloid β Proteins (Aβ) and Lipid Membranes. In: Mol, N., Fischer, M. (eds) Surface Plasmon Resonance. Methods in Molecular Biology, vol 627. Humana Press. https://doi.org/10.1007/978-1-60761-670-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-670-2_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-669-6

  • Online ISBN: 978-1-60761-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics