Skip to main content

NMR Studies of Membrane Proteins

  • Protocol
  • First Online:
Membrane Transporters in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 637))

Abstract

Nuclear magnetic resonance studies of membrane proteins yield valuable insights into their structure and topology. For example, the tilt angle and rotation of the helices in an ion channel can be determined by solid-state NMR spectroscopy in aligned lipid bilayers. Details about the structure of the protein in aligned phospholipids environments are immediately apparent from inspection of the SAMMY spectrum and the data can be further used for the determination of atomic resolution three-dimensional structures. SAR by NMR is a technique that is well suited for the field of membrane transporter proteins. The experiments on protein/phospholipid samples provide a unique insight into the interaction of drugs and the functional proteins.

The advances required to transform solid-state NMR from a spectroscopic technique to a generally applicable method for determining molecular structures included multiple-pulse sequences, double-resonance methods, and separated local field spectroscopy. It also required improvements in instrumentation, especially the use of high-field magnets and efficient probes capable of high-power radio-frequency irradiations at high frequencies. The pace of development is accelerating and the local field is being utilized in an increasing number of ways in spectroscopic investigations of molecular structure and dynamics. Applications to many helical membrane proteins are underway and promise to add to our understanding of membrane proteins in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavanagh, J., Fairbrother, W.J., Palmer III, A.G., and Skelton, N.J. (1995) Protein NMR Spectroscopy. Academic, San Diego, CA.

    Google Scholar 

  2. Wuthrich, K. (1998) The second decade into the third millennium. Nat. Struct. Biol. 5 Suppl, 492–495.

    Article  CAS  PubMed  Google Scholar 

  3. Opella, S.J. (1997) NMR and membrane proteins. Nat. Struct. Biol. 4 Suppl, 845–848.

    CAS  PubMed  Google Scholar 

  4. McDonnell, P.A. and Opella, S.J. (1993) Effect of detergent concentration on multidimensional solution NMR spectra of membrane proteins in micelles. J. Magn. Reson. B 102, 1205–1225.

    Google Scholar 

  5. Sanders, C.R., Hare, B.J., Howard, K., and Prestegard, J.H. (1994) Magnetically oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog. NMR Spectrosc. 26, 421–444.

    Article  CAS  Google Scholar 

  6. Opella, S.J., Stewart, P.L., and Valentine, K.G. (1987) Protein structure by solid-state NMR spectroscopy. Q. Rev. Biophys. 19, 7–49.

    Article  CAS  PubMed  Google Scholar 

  7. Marassi, F.M., Ramamoorthy, A., and Opella, S.J. (1997) Complete resolution of the solid-state NMR spectrum of a uniformly 15 N-labeled membrane protein in phospholipid bilayers. Proc. Natl. Acad. Sci. USA 94, 8551–8556.

    Article  CAS  PubMed  Google Scholar 

  8. Almeida, F.C. and Opella, S.J. (1997) fd coat protein structure in membrane environments: structural dynamics of the loop between the hydrophobic trans-membrane helix and the amphipathic in-plane helix. J. Mol. Biol. 270, 481–495.

    Article  CAS  PubMed  Google Scholar 

  9. Ma, C. and Opella, S.J. (2000) Lanthanide ions bind specifically to an added “EF-hand” and orient a membrane protein in micelles for solution NMR spectroscopy. J. Magn. Reson. 146, 381–384.

    Article  CAS  PubMed  Google Scholar 

  10. Veglia, G. and Opella, S.J. (2000) Lanthanide ion binding to adventitious sites aligns membrane proteins in micelles for solution NMR spectroscopy. J. Am. Chem. Soc. 122, 11733–11734.

    Article  CAS  Google Scholar 

  11. Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T., and Bax, A. (2002) Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J. Am. Chem. Soc. 124, 2450–2451.

    Article  CAS  PubMed  Google Scholar 

  12. Griffin, R.G. (1998) Dipolar recoupling in MAS spectra of biological solids. Nat. Struct. Biol. 5 Suppl, 508–512.

    Article  CAS  PubMed  Google Scholar 

  13. Howard, K.P. and Opella, S.J. (1996) High-resolution solid-state NMR spectra of integral membrane proteins reconstituted into magnetically oriented phospholipid bilayers. J. Magn. Reson. B 112, 91–94.

    Google Scholar 

  14. Park, S.H., De Angelis, A.A., Nevzorov, A.A., Wu, C.H., and Opella, S.J. (2006) Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Biophys. J. 91, 3032–3042.

    Article  CAS  PubMed  Google Scholar 

  15. Opella, S.J., Marassi, F.M., Gesell, J.J., Valente, A.P., Kim, Y., Oblatt-Montal, M., and Montal, M. (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat. Struct. Biol. 6, 374–379.

    Article  CAS  PubMed  Google Scholar 

  16. Nevzorov, A.A. and Opella, S.J. (2003) Structural fitting of PISEMA spectra of aligned proteins. J. Magn. Reson. 160, 33–39.

    Article  CAS  PubMed  Google Scholar 

  17. Abragam, A. (1961) The Principles of Nuclear Magnetism. Oxford University Press, Oxford, UK.

    Google Scholar 

  18. Nevzorov, A.A. and Opella, S.J. (2003) A “Magic Sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy. J. Magn. Reson. 164, 182–186.

    Article  CAS  PubMed  Google Scholar 

  19. Waugh, J.S. (1976) Uncoupling of local field spectra in nuclear magnetic resonance: determination of atomic positions in solids. Proc. Natl. Acad. Sci. U S A. 73, 1394-1397.

    Article  CAS  PubMed  Google Scholar 

  20. Marassi, F. M., and Opella, S. J. (2000) A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 150–155.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., Song, Z., Nishimura, K., Gan, Z., Fu, R., Quine, J.R., and Cross, T.A. (2000) Imaging membrane protein helical wheels. J. Magn. Reson. 144, 162–167.

    Article  CAS  PubMed  Google Scholar 

  22. Bak, M., Schultz, R., Vosegaard, T., and Nielsen, N.C. (2002) Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. J. Magn. Reson. 154, 28–45.

    Article  CAS  PubMed  Google Scholar 

  23. Mesleh, M.F., Veglia, G., DeSilva, T.M., Marassi, F.M., and Opella, S.J. (2002) Dipolar waves as NMR maps of protein structure. J. Am. Chem. Soc. 124, 4206–4207.

    Article  CAS  PubMed  Google Scholar 

  24. Williams, K.A., Farrow, N.A., Deber, C.M., and Kay, L.E. (1996) Structure and dynamics of bacteriophage IKe major coat protein in MPG micelles by solution NMR. Biochemistry 35, 5145–5157.

    Article  CAS  PubMed  Google Scholar 

  25. MacKenzie, K.R., Prestegard, J.H., and Engelman, D.M. (1997) A transmembrane helix dimer: structure and implications. Science 276, 131–133.

    Article  CAS  PubMed  Google Scholar 

  26. Papavoine, C.H., Christiaans, B.E., Folmer, R.H., Konings, R.N., and Hilbers, C.W. (1998) Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues. J. Mol. Biol. 282, 401–419.

    Article  CAS  PubMed  Google Scholar 

  27. Townsley, L.E., Tucker, W.A., Sham, S., and Hinton, J.F. (2001) Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40, 11676–11686.

    Article  CAS  PubMed  Google Scholar 

  28. Sorgen, P.L., Cahill, S.M., Krueger-Koplin, R.D., Krueger-Koplin, S.T., Schenck, C.C., and Girvin, M.E. (2002) Structure of the Rhodobacter sphaeroides light-harvesting 1 beta subunit in detergent micelles. Biochemistry 41, 31–41.

    Article  CAS  PubMed  Google Scholar 

  29. Zamoon, J., Mascioni, A., Thomas, D.D., and Veglia, G. (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys. J. 85, 2589–2598.

    Article  CAS  PubMed  Google Scholar 

  30. Yushmanov, V.E., Mandal, P.K., Liu, Z., Tang, P., and Xu, Y. (2003) NMR structure and backbone dynamics of the extended second transmembrane domain of the human neuronal glycine receptor alpha1 subunit. Biochemistry 42, 3989–3995.

    Article  CAS  PubMed  Google Scholar 

  31. Yushmanov, V.E., Xu, Y., and Tang, P. (2003) NMR structure and dynamics of the second transmembrane domain of the neuronal acetylcholine receptor beta 2 subunit. Biochemistry 42, 13058–13065.

    Article  CAS  PubMed  Google Scholar 

  32. Howell, S.C., Mesleh, M.F., and Opella, S.J. (2005) NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry 44, 5196–5206.

    Article  CAS  PubMed  Google Scholar 

  33. Ketchem, R.R., Hu, W., and Cross, T.A. (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J., Kim, S., Kovacs, F., and Cross, T.A. (2001) Structure of the transmembrane region of the M2 protein H(+) channel. Protein Sci. 10, 2241–2250.

    Article  CAS  PubMed  Google Scholar 

  35. Valentine, K.G., Liu, S.F., Marassi, F.M., Veglia, G., Opella, S.J., Ding, F.X., Wang, S.H., Arshava, B., Becker, J.M., and Naider, F. (2001) Structure and topology of a peptide segment of the 6th transmembrane domain of the Saccharomyces cerevisae alpha-factor receptor in phospholipid bilayers. Biopolymers 59, 243–256.

    Article  CAS  PubMed  Google Scholar 

  36. Marassi, F.M. and Opella, S.J. (2003) Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci. 12, 403–411.

    Article  CAS  PubMed  Google Scholar 

  37. Park, S.H., Mrse, A.A., Nevzorov, A.A., Mesleh, M.F., Oblatt-Montal, M., Montal, M., and Opella, S.J. (2003) Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J. Mol. Biol. 333, 409–424.

    Article  CAS  PubMed  Google Scholar 

  38. Hajduk, P.J., Meadows, R.P., and Fesik, S.W. (1997) Discovering high-affinity ligands for proteins. Science 278, 497–499.

    Article  CAS  PubMed  Google Scholar 

  39. Hajduk, P.J., Meadows, R.P., and Fesik, S.W. (1999) NMR-based screening in drug discovery. Q. Rev. Biophys. 32, 211–240.

    Article  CAS  PubMed  Google Scholar 

  40. Lepre, C.A., Moore, J.M., and Peng, J.W. (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 104, 3641–3676.

    Article  CAS  PubMed  Google Scholar 

  41. Huth, J.R., Sun, C., Sauer, D.R., and Hajduk, P.J. (2005) Utilization of NMR-derived fragment leads in drug design. Methods Enzymol. 394, 549–571.

    Article  CAS  PubMed  Google Scholar 

  42. Takeuchi, K. and Wagner, G. (2006) NMR studies of protein interactions. Curr. Opin. Struct. Biol. 16, 109–117.

    Article  CAS  PubMed  Google Scholar 

  43. Yu, L., Sun, C., Song, D., Shen, J., Xu, N., Gunasekera, A., Hajduk, P.J., and Olejniczak, E.T. (2005) Nuclear magnetic resonance structural studies of a potassium channel-charybdotoxin complex. Biochemistry 44, 15834–15841.

    Article  CAS  PubMed  Google Scholar 

  44. Watts, A. (2005) Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat. Rev. Drug Discov. 4, 555–568.

    Article  CAS  PubMed  Google Scholar 

  45. Luca, S., White, J.F., Sohal, A.K., Filippov, D.V., van Boom, J.H., Grisshammer, R., and Baldus, M. (2003) The conformation of neurotensin bound to its G protein-coupled receptor. Proc. Natl. Acad. Sci. U S A 100, 10706–10711.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institutes of Health; it utilized the Biomedical Technology Resource for NMR Molecular Imaging of Proteins, which is supported by grant P41EB002031; and G.A.C. received support from Training Grant 5T32DK00723332. We thank Gilead Sciences, Inc., for support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cook, G.A., Opella, S.J. (2010). NMR Studies of Membrane Proteins. In: Yan, Q. (eds) Membrane Transporters in Drug Discovery and Development. Methods in Molecular Biology, vol 637. Humana Press. https://doi.org/10.1007/978-1-60761-700-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-700-6_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-699-3

  • Online ISBN: 978-1-60761-700-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics