Skip to main content

Effect of Anesthesia in Stroke Models

  • Protocol
  • First Online:
Rodent Models of Stroke

Part of the book series: Neuromethods ((NM,volume 47))

Abstract

Many investigators have examined or are examining the effects of focal and global cerebral ischemia on brain physiology, chemistry, and molecular aspects and function. Many animal and cellular models are utilized for these types of studies. However, anesthetics must be used for the in vivo studies, or at least in most animal models of cerebral ischemia. In many of these studies, there has been an intensive search for agents that are neuroprotective for cerebral ischemia. The use of anesthetics may complicate the issues relating to neuroprotection because many anesthetics themselves possess neuroprotective characteristics. This chapter addresses the more commonly used anesthetics for the study of cerebral ischemia. At the conclusion of the chapter, the issues related to why anesthetics have not been successfully used in humans as neuroprotective agents are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells BA, Keats AC, Cooley DA (1963) Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carotid occlusion. Surgery 54:216–223

    PubMed  CAS  Google Scholar 

  2. Patel P, Drummond JC, Cole DJ, Kelly PJ, Watson M (1998) Isoflurane and pentobarbital reduce the frequency of transient ischemic depolarizations during focal ischemia in rats. Anesth Analg 86:773–780

    PubMed  CAS  Google Scholar 

  3. Ochiai C, Asano T, Takakura K, Fukuda T, Horizoe H, Morimoto Y (1982) Mechanisms of cerebral protection by pentobarbital and nizofenone correlated with the course of local cerebral blood flow changes. Stroke 13:788–795

    Article  PubMed  CAS  Google Scholar 

  4. Warner DS, Hansen TD, Vust L, Todd MM (1989) The effects of isoflurane and pentobarbital on the distribution of cerebral blood flow during focal cerebral ischemia in the rat. J Neurosurg Anesth 1:219–226

    Article  CAS  Google Scholar 

  5. Wilson JX, Gelb AW (2002) Free radicals, antioxidants, and neurologic injury: possible relationships to cerebral protection by anesthetics. J Neurosurg Anesth 14:66–79

    Article  Google Scholar 

  6. Kahraman S, Demiryurek AT (1997) Propofol is a peroxynitrite scavenger. Anesth Analg 84:1127–1129

    PubMed  CAS  Google Scholar 

  7. Harada H, Kelly PJ, Cole DJ, Drummond JC, Patel PM (1999) Isoflurane reduces N-methyl-D-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg 89:1442–1447

    PubMed  CAS  Google Scholar 

  8. Bickler PE, Buck LT, Hansen BM (1994) Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices. Anesthesiology 81:1461–1469

    Article  PubMed  CAS  Google Scholar 

  9. Jenkins A, Greenblatt EP, Faulkner HJ, Bertaccini E, Light A, Lin A, Andreasen A, Viner A, Trudell JR, Harrison NL (2001) Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci 21:RC136

    PubMed  CAS  Google Scholar 

  10. Harris BD, Moody EJ, Basile AS, Skolnick P (1994) Volatile anesthetics bidirectionally and stereospecifically modulate ligand binding to GABA receptors. Eur J Pharmacol 267:269–274

    Article  PubMed  CAS  Google Scholar 

  11. Gyulai FE, Mintun MA, Firestone LL (2001) Dose dependent enhancement of in vivo GABAA-benzodiazepine receptor binding by isoflurane. Anesthesiology 95:585–593

    Article  PubMed  CAS  Google Scholar 

  12. Sugimura M, Kitayama S, Morita K, Imai Y, Irifune M, Takavada T, Kawahara M, Dohi T (2002) Effects of GABAergic agents on anesthesia induced by halothane, isoflurane, and thiamylal in mice. Pharmacol Biochem Behav 72:111–116

    Article  PubMed  CAS  Google Scholar 

  13. Hirota K, Roth SH (1997) Sevoflurane modulates both GABAA and GABAB receptors in CA 1 or rat hippocampus. Br J Anaesth 78:60–65

    Article  PubMed  CAS  Google Scholar 

  14. Wang L, Traystman RJ, Murphy SJ (2008) Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 8:104–110

    Article  PubMed  CAS  Google Scholar 

  15. Kitano H, Kirsch JR, Hum PD, Murphy SJ (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 27:1108–1128

    Article  PubMed  CAS  Google Scholar 

  16. Bhardwaj A, Castro IA, Alkayed NJ, Hum PD, Kirsch JR (2001) Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke 32:1920–1925

    Article  PubMed  CAS  Google Scholar 

  17. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, Dirnagl U (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898

    Article  PubMed  CAS  Google Scholar 

  18. Zheng S, Zuo Z (2003) Isoflurane preconditioning reduces Purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience 118:99–106

    Article  PubMed  CAS  Google Scholar 

  19. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and independent control of neuronal survival by the P13k-AKt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  PubMed  CAS  Google Scholar 

  20. Garcia L, Burda J, Hrehorovska M, Burda R, Martin ME, Salinas M (2004) Ischaemic preconditioning in the rat brain: effect on the activity of several initiation factors, AKt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 88:136–147

    Article  PubMed  CAS  Google Scholar 

  21. Nakajima T, Iwabuchi S, Miyazaki H, Okuma Y, Kuwabara M, Nomura Y, Kawahara K (2004) Preconditioning prevents ischemia-induced neuronal death through persistent AKt activation in the penumbra region of the rat brain. J Vet Med Sci 66:521–527

    Article  PubMed  CAS  Google Scholar 

  22. Huang PL (2004) Nitric oxide and cerebral ischemic preconditioning. Cell Calcium 36:232–239

    Article  CAS  Google Scholar 

  23. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X, Lu Z (2003) Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg 96:233–237

    PubMed  CAS  Google Scholar 

  24. Kehl F, Payne RS, Roever N, Schurr A (2004) Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res 1021:76–81

    Article  PubMed  CAS  Google Scholar 

  25. Wang ZP, Zhang ZH, Zeng YM, Jiang S, Wang SQ, Wang S (2006) Protective effect of sevoflurane preconditioning on oxygen-glucose deprivation injury in rat hippocampal slices: the role of mitochondrial KATP channels. Sheng Li Xue Bao 58:201–206

    PubMed  CAS  Google Scholar 

  26. Liu Y, Xiong L, Chen S, Wang Q (2006) Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. Can J Anaesth 53:194–201

    Article  PubMed  Google Scholar 

  27. Zheng S, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol 65:1172–1180

    Article  PubMed  CAS  Google Scholar 

  28. Clarkson AN (2007) Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci 80:1157–1175

    Article  PubMed  CAS  Google Scholar 

  29. Perez-Pinzon MA (2007) Mechanisms of neuroprotection during ischemic preconditioning: lessons from anoxic tolerance. Comp Biochem Physiol A Mol Integr Physiol 147:291–299

    Article  PubMed  CAS  Google Scholar 

  30. Goldstein A Jr, Wells BA, Keats AS (1966) Increased tolerance to cerebral anoxia by pentobarbital. Arch Int Pharmacodyn Ther 161:138–143

    PubMed  CAS  Google Scholar 

  31. Goldstein A Jr, Wells BA, Keats AS (1964) Effect of anesthesia on tolerance of dog brain to anoxia. Anesthesiology 25:98

    Article  Google Scholar 

  32. Wright RL, Ames A III (1964) Measurement of maximal permissible cerebral ischemia and a study of its pharmacologic prolongation. J Neurosurg 22:567–574

    Google Scholar 

  33. Wechsler RL, Dripps RD, Kety SS (1951) Blood flow and oxygen consumption of the human brain during anesthesia produced by thiopental. Anesthesiology 12:308–314

    Article  PubMed  CAS  Google Scholar 

  34. Smith AL, Marque JJ (1976) Anesthetics and cerebral edema. Anesthesiology 45:64–72

    Article  PubMed  CAS  Google Scholar 

  35. Shapiro HM (1975) Intracranial hypertension: therapeutic and anesthetic considerations. Anesthesiology 43:445–471

    Article  PubMed  CAS  Google Scholar 

  36. Todd MM, Chadwick HS, Shapiro HM, Dunlop BJ, Marshall LF, Dueck R (1982) The neurologic effects of thiopental therapy following experimental cardiac arrest in cats. Anesthesiology 57:76–86

    Article  PubMed  CAS  Google Scholar 

  37. Kofke WA, Nemoto EM, Hossmann KA, Taylor F, Kessler PD, Stezoski SW (1979) Brain blood flow and metabolism after global ischemia and post-insult thiopental therapy in monkeys. Stroke 10:554–560

    Article  PubMed  CAS  Google Scholar 

  38. Nordstrom CH, Calderini G, Rehncrona S, Siesjo BK (1977) Effects of phenobarbital anesthesia on post-ischemic cerebral blood flow and oxygen consumption in the rat. Acta Neurol Scand Suppl 64:148–149

    PubMed  Google Scholar 

  39. Nemoto EM (1979) Studies on the pathogenesis of ischemic brain damage and its amelioration by barbiturate therapy. In: Zuelch KJ, Kaufman W, Hossmann KA, Hossmann V (eds) Brain and heart infarct II. Springer, Berlin, pp 306–317

    Chapter  Google Scholar 

  40. Nemoto EM, Shiu GK, Nemmer JP, Bleyaert AL (1983) Free fatty acid accumulation in the pathogenesis and therapy of ischemic-anoxic brain injury. Am J Emerg Med 1:175–179

    Article  PubMed  CAS  Google Scholar 

  41. Traystman RJ (2004) Anesthetic mediated neuroprotection: established fact or passing fancy? J Neurosurg Anesthesiol 16:308–312

    Article  PubMed  Google Scholar 

  42. Warner DS (2004) Anesthetics provide limited but real protection against acute brain injury. J Neurosurg Anesthesiol 16:303–307

    Article  PubMed  Google Scholar 

  43. Fukuda S, Warner DS (2007) Cerebral protection. Br J Anaesth 99:10–17

    Article  PubMed  CAS  Google Scholar 

  44. Head B, Patel P (2007) Anesthetics and brain protection. Curr Opin Anaesthesiol 20:395–399

    Article  PubMed  Google Scholar 

  45. Steen PA, Michenfelder JD (1979) No barbiturate protection in a dog model of complete cerebral ischemia. Ann Neurol 5:343–349

    Article  PubMed  CAS  Google Scholar 

  46. Bleyaert AL, Nemoto EM, Safar P, Stezoski SM, Mickell JJ, Moossy J, Rao GR (1978) Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology 49:390–398

    Article  PubMed  CAS  Google Scholar 

  47. Breivik H, Safar P, Sands P, Fabritius R, Linol B, Lust P, Mollies A, Orr M, Renck H, Snyder JV (1978) Clinical feasibility trials of barbiturate therapy after cardiac arrest. Crit Care Med 6:228–244

    Article  PubMed  CAS  Google Scholar 

  48. Snyder BD, Ramirez-Lassepas M, Sukhum P, Fryd D, Sung JH (1979) Failure of thiopental to modify global anoxic injury. Stroke 10:135–141

    Article  PubMed  CAS  Google Scholar 

  49. Gisvold SE, Safar P, Hendrickx HH, Rao G, Moossy J, Alexander H (1984) Thiopental treatment after global brain ischemia in pig-tailed monkeys. Anesthesiology 60:88–96

    Article  PubMed  CAS  Google Scholar 

  50. Brain Resuscitation Clinical Trial I Study Group (1986) Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 314:397–403

    Article  Google Scholar 

  51. Smith AL, Hoff JT, Nielsen SL, Larson CP (1974) Barbiturate protection in acute focal cerebral ischemia. Stroke 5:1–7

    Article  PubMed  CAS  Google Scholar 

  52. Hoff JT, Smith AL, Hankinson HL, Nielsen SL (1975) Barbiturate protection from cerebral infarction in primates. Stroke 6:28–33

    Article  PubMed  CAS  Google Scholar 

  53. Michenfelder JD, Milde JH, Sundt TM (1976) Cerebral protection by barbiturate anesthesia: use after middle cerebral artery occlusion in JAVA monkeys. Arch Neurol 33:345–350

    Article  PubMed  CAS  Google Scholar 

  54. Carkill G, Sivalingam S, Reitan JA, Gilroy BA, Helphrey MG (1978) Dose dependency of the post-insult protective effect of pentobarbital in the canine stroke model. Stroke 9:10–12

    Article  Google Scholar 

  55. Selman WR, Spetzler RF, Roski RA, Roessmann V, Crumrine R, Macko R (1982) Barbiturate coma in focal cerebral ischemia: relationship of protection to timing of therapy. J Neurosurg 56:685–690

    Article  PubMed  CAS  Google Scholar 

  56. Warner DS, Zhou JG, Ramani R, Todd MM (1991) Reversible focal ischemia in the rat: effects of halothane, isoflurane and methohexital anesthesia. J Cereb Blood Flow Metab 11:794–802

    Article  PubMed  CAS  Google Scholar 

  57. Drummond JC, Cole DJ, Patel PM, Reynolds LW (1995) Focal cerebral ischemia during anesthesia with etomidate, isoflurane or thiopental: a comparison of the extent of cerebral injury. Neurosurgery 37:742–748

    Article  PubMed  CAS  Google Scholar 

  58. Kawaguchi M, Fukuya H, Patel PM (2005) Neuroprotective effects of anesthetic agents. J Anesth 19:150–156

    Article  PubMed  Google Scholar 

  59. Chen L, Gong Q, Xiao C (2003) Effects of propofol, midazolam, and thiopental sodium on outcome and amino acids accumulation in focal cerebral ischemia-reperfusion in rats. Chin Med J 116:292–296

    PubMed  CAS  Google Scholar 

  60. Drummond JC (1993) Do barbiturates really protect the brain? Anesthesiology 78:611–613

    PubMed  CAS  Google Scholar 

  61. Nillson L, Siesjo BK (1975) The effect of phenobarbitone on blood flow and oxygen consumption in the rat brain. Acta Anaesthesiol Scand Suppl 57:18–24

    Article  Google Scholar 

  62. Zhu H, Cotrell JE, Kass IS (1997) The effect of thiopental and propofol on NMDA- and AMPA-mediated glutamate excitotoxicity. Anesthesiology 87:944–951

    Article  PubMed  CAS  Google Scholar 

  63. Kimbro JR, Kelly PJ, Drummond JC, Cole DJ, Patel PM (2000) Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesth Analg 89:1442–1447

    Google Scholar 

  64. Zhan RZ, Fujiwara N, Endoh H, Yamakura T, Taga K, Fukuda S, Shimoji K (1998) Thiopental inhibits increases in Ca++ induced by membrane depolarization, NMDA receptor activation and ischemia in rat hippocampal and cortical slices. Anesthesiology 89:456–466

    Article  PubMed  CAS  Google Scholar 

  65. Smith DS, Rehncrona S, Westerberg E, Akesson B, Siesjo BK (1979) Lipid peroxidation in brain tissue in vitro: antioxidant effects of barbiturates. Acta Physiol Scand 105:527–529

    Article  PubMed  CAS  Google Scholar 

  66. Meldrum B (1982) Pharmacology of GABA. Clin Neuropharmacol 5:293–316

    Article  PubMed  CAS  Google Scholar 

  67. Concas A, Santoro G, Serra M, Sanna E, Biggio G (1991) Neurochemical action of the general anesthetic propofol on the chloride ion channel coupled with GABAA receptors. Brain Res 542:225–232

    Article  PubMed  CAS  Google Scholar 

  68. Orser BA, Wang LY, Pennefather PS, MacDonald JF (1994) Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci 14:7747–7760

    PubMed  CAS  Google Scholar 

  69. Orser BA, Bertlik M, Wang LY, MacDonald JF (1995) Inhibition by propofol (2, 6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurons. Br J Pharmacol 116:1761–1768

    Article  PubMed  CAS  Google Scholar 

  70. Boisset S, Steghens JP, Favetta P, Terreux R, Guitton J (2004) Relative antioxidant capacities of propofol and its main metabolites. Arch Toxicol 8:835–842

    Google Scholar 

  71. Adembri C, Venture L, Pellegrini-Giampietro DE (2007) Neuroprotective effects of propofol in acute cerebral injury. CNS Drug Rev 13:333–351

    Article  PubMed  CAS  Google Scholar 

  72. Feiner JR, Bickler PE, Estrada S, Donohoe PH, Fahlman CS, Schuyler JA (2005) Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures. Anesth Analg 100:215–225

    Article  PubMed  CAS  Google Scholar 

  73. Kochs E, Hoffman WE, Werner C, Thomas C, Albrecht RF, Schulte EJ (1992) The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology 6:245–252

    Article  Google Scholar 

  74. Young Y, Menon DK, Tisavipat N, Matta BF, Jones JG (1997) Propofol neuroprotection in a rat model of ischemia reperfusion injury. Anesthesiology 4:320–326

    Google Scholar 

  75. Yano T, Nakayama R, Ushijima K (2000) Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant. Brain Res 883:69–76

    Article  PubMed  CAS  Google Scholar 

  76. Ito H, Watanabe Y, Isshiki A, Uchino H (1999) Neuroprotective properties of propofol and midazolam, but not pentobarbital on neuronal damage induced by forebrain ischemia based on the GABAA receptors. Acta Anesthesiol Scand 43:153–162

    Article  CAS  Google Scholar 

  77. Gelb AW, Bayona NA, Wilson JX, Cechetto DF (2002) Propofol anesthesia compared to awake reduces infarct size in rats. Anesthesiology 96:1183–1190

    Article  PubMed  CAS  Google Scholar 

  78. Tsai YC, Huang SI, Lai YY, Chang CL, Cheng JT (1994) Propofol does not reduce infarct volume in rats undergoing permanent middle cerebral artery occlusion. Acta Anaesthesiol Sin 2:99–104

    Google Scholar 

  79. Zhan R, Qi S, Wu C, Fujihara H, Taga K, Shimoji K (2001) Intravenous anesthetics differentially reduce neurotransmission damage caused by oxygen-glucose deprivation in rat hippocampal slices in correlation with N-methyl-D-aspartate receptor inhibition. Crit Care Med 9:808–813

    Article  Google Scholar 

  80. Bayona NA, Gelb AW, Jiang Z, Wilson JX, Urquhart BL, Cechetto DF (2004) Propofol neuroprotection in cerebral ischemia and its effects on low-molecular weight antioxidants and skilled motor tasks. Anesthesiology 100:1151–1159

    Article  PubMed  CAS  Google Scholar 

  81. Kanbak M, Saricaoglu F, Avci A, Ocal T, Koray Z, Aypar U (2004) Propofol offers no advantage over isoflurane anesthesia for cerebral protection during cardiopulmonary bypass: a preliminary study of S100 beta protein levels. Can J Anesth 1:712–717

    Article  Google Scholar 

  82. Engelhard K, Weiner C, Eberspacher E, Bachl M, Blobner M, Hildt E, Hutzler P, Kochs E (2003) The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonists (+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rat. Anesth Analg 96:524–531

    PubMed  CAS  Google Scholar 

  83. Himmelscher S, Pfenninger E, Georgieff M (1996) The effects of ketamine-isomers on neuronal injury and regeneration in rat hippocampal neurons. Anesth Analg 83:505–512

    Google Scholar 

  84. Kolenda H, Gremmrlt A, Raching S, Braun D, Markakis E (1996) Ketamine for analgosedative therapy in intensive care treatment of head-injured patients. Acta Neurochir (Wien) 138:1193–1199

    Article  CAS  Google Scholar 

  85. Botero CA, Smith CE, Holbrook C, Chavez AM, Snow NJ, Hagen JF, Pinchak AC (2000) Total intravenous anesthesia with a propofol-ketamine combination during coronary artery surgery. J Cardiothorac Vasc Anesth 14:409–415

    Article  PubMed  CAS  Google Scholar 

  86. Laffey JC, Boglan JF, Cheng DC (2002) The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology 97:215–252

    Article  PubMed  CAS  Google Scholar 

  87. Xu J, Wen Y, Cibelli M, Ma D, Maze M (2006) Postoperative cognitive dysfunction: a role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 105:A1175

    Google Scholar 

  88. Church J, Zeman S, Lodge D (1988) The neuroprotective action of ketamine and MK -801 after transient cerebral ischemia in rats. Anesthesiology 69:702–709

    Article  PubMed  CAS  Google Scholar 

  89. Hoffman W, Pelligrino D, Werner C, Kochs E, Albrecht RF, SchulteamEsh J (1992) Ketamine decreases plasma catecholamines and improves outcome from incomplete cerebral ischemia in rats. Anesthesiology 76:755–762

    Article  PubMed  CAS  Google Scholar 

  90. Lees GJ (1995) Influence of ketamine on the neuronal death caused by NMDA in the rat hippocampus. Neuropharmacology 34:411–417

    Article  PubMed  CAS  Google Scholar 

  91. Chan P, Chu L (1998) Ketamine protects cultured astrocytes from glutamate induced swelling. Brain Res 487:380–383

    Article  Google Scholar 

  92. Shibuta S, Varathan S, Mashimo T (2006) Ketamine and thiopental sodium: individual and combined neuroprotective effects on cortical cultures exposed to NMDA or nitric oxide. Br J Anaesth 97:517–524

    Article  PubMed  CAS  Google Scholar 

  93. Wang L, Jing W, Hang YN (2008) Glutamate-induced c-Jun expression in neuronal PC12 cells: the effect of ketamine and propofol. J Neurosurg Anesthesiol 20:124–130

    Article  PubMed  Google Scholar 

  94. Hudetz JA, Iqbal SD, Patterson KM, Burne AJ, Hudetz AG, Pagel PS, Warltier DC (2009) Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anesthesiol Scand. doi:10.1111/j.1399-6576

    Google Scholar 

  95. Himmelscher S, Durieux ME (2005) Revising a dogma: ketamine for patients with neurological injury? Anesth Analg 101:524–534

    Article  CAS  Google Scholar 

  96. Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anesthetics ketamine and phencyclidine selectively reduce excitation of central mammalian neurons by N-methyl aspartate. Br J Pharmacol 79:565–575

    Article  PubMed  CAS  Google Scholar 

  97. Clifford DB, Zorumski CF, Olney JW (1989) Ketamine and MK-801 prevent degeneration of thalamic neurons induced by cortical seizures. Exp Neurol 105:272–279

    Article  PubMed  CAS  Google Scholar 

  98. Shapiro Y, Lam AM, Eng CC, Lashaprasit Y, Michel M (1994) Therapeutic time window and dose response of the beneficial effects of ketamine in experimental head injury. Stroke 25:1637–1643

    Article  Google Scholar 

  99. Proescholdt M, Heimann A, Kempski O (2001) Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res 904:245–251

    Article  PubMed  CAS  Google Scholar 

  100. Jensen ML, Auer RN (1988) Ketamine fails to protect against ischemic neuronal necrosis in the rat. Br J Anaesth 61:206–210

    Article  PubMed  CAS  Google Scholar 

  101. Ridenour TR, Warner DS, Todd MM, Baker MT (1991) Effects of ketamine on outcome from temporary middle cerebral artery occlusion in the spontaneously hypertensive rat. Brain Res 565:116–122

    Article  PubMed  CAS  Google Scholar 

  102. Church J, Zeman S (1991) Ketamine promotes hippocampal CA1 pyramidal neuron loss after a short-duration ischemic insult in rats. Neurosci Lett 123:65–68

    Article  PubMed  CAS  Google Scholar 

  103. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    Article  PubMed  CAS  Google Scholar 

  104. Pohl D, Bittigau P, Ishimura MJ, Stadthaus D, Hubner C, Olney JW, Turski L, Ikonomidou C (1999) N-methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci USA 96:2508–2513

    Article  PubMed  CAS  Google Scholar 

  105. Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, Olney JW (2005) Potential of ketamine and midazolam individually or in combination to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146:189–197

    Article  PubMed  CAS  Google Scholar 

  106. Slikkor W Jr, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC, Doerge DR, Scallet AC, Patterson TA, Hanig JP, Paule MG, Wang C (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98:145–158

    Article  CAS  Google Scholar 

  107. Wang C, Sadovova N, Hotchkiss CE, Fu X, Scallet AC, Patterson TA, Hanig J, Paule MG, Slikkor W Jr (2006) Blockade of N-methyl-D-aspartate receptors by ketamine produces loss of postnatal day 3 monkey frontal cortical neurons in culture. Toxicol Sci 91:192–201

    Article  PubMed  CAS  Google Scholar 

  108. Pfenninger E, Reith A (1990) Ketamine and intracranial pressure. In: Domino EF (ed) Status of ketamine in anesthesiology. NPP Books, Ann Arbor, pp 109–117

    Google Scholar 

  109. Reicher D, Bhalla P, Rubinstein EH (1987) Cholinergic cerebral vasodilator effects of ketamine in rabbits. Stroke 18:445–447

    Article  PubMed  CAS  Google Scholar 

  110. Dawson B, Michenfelder RA, Theye RA (1971) Effect of ketamine on canine cerebral blood flow and metabolism: modification by prior administration of thiopental. Anesth Analg 50:443–447

    Article  PubMed  CAS  Google Scholar 

  111. Schwedler M, Miletich DJ, Albrecht RF (1982) Cerebral blood flow and metabolism following ketamine administration. Can Anaesth Soc J 29:222–226

    Article  PubMed  CAS  Google Scholar 

  112. Crosby G, Crane AM, Sokoloff L (1982) Local changes in cerebral glucose utilization during ketamine anesthesia. Anesthesiology 56:437–443

    Article  PubMed  CAS  Google Scholar 

  113. Nelson SR, Howard RB, Cross RS, Samson F (1980) Ketamine-induced changes in regional glucose utilization in the rat brain. Anesthesiology 52:330–334

    Article  PubMed  CAS  Google Scholar 

  114. Fleischer JE, Milde JH, Moyer TP, Michenfelder JD (1988) Cerebral effects of high-dose midazolam and subsequent reversal with RO 15-1788 in dogs. Anesthesiology 68:234–242

    Article  PubMed  CAS  Google Scholar 

  115. Obraclović DI, Savi MM, Andjelkovi DS, Ugresić ND, Bokojić DR (2003) The influence of midazolam and flumazenil on rat brain slice oxygen consumption. Pharmacol Res 47:127–131

    Article  Google Scholar 

  116. Lei B, Popp S, Cottrell JE, Kass IS (2009) Effects of midazolam on brain injury after transient focal cerebral ischemia in rats. J Neurosurg Anesth. doi:10.1097/ ANA.obo13e318191697a

    Google Scholar 

  117. Abramowicz AE, Kass IS, Chambers G, Cottrell JE (1991) Midazolam improves electrophysiologic recovery after anoxia and reduces the changes in APT levels and calcium influx during anoxia in the rat hippocampal slice. Anesthesiology 74:1121–1128

    Article  PubMed  CAS  Google Scholar 

  118. Rekling JC (2003) Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation. Neurosci Lett 335:167–170

    Article  PubMed  CAS  Google Scholar 

  119. Xue QS, Yu BW, Wang ZJ, Chen HZ (2004) Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortex slices. Acta Pharmacol Sin 25:115–120

    PubMed  CAS  Google Scholar 

  120. Drummond JC, McKay LD, Cole DJ, Patel PM (2005) The role of nitric oxide synthase inhibition in the adverse effects of etomidate in the setting of focal cerebral ischemia in rats. Anesth Analg 100:841–846

    Article  PubMed  CAS  Google Scholar 

  121. Lenz C, Rebel A, VanAckern K, Kuschinsky W, Waschke KF (1998) Local cerebral blood flow, local cerebral glucose utilization and flow metabolism coupling during sevoflurane versus isoflurane anesthesia in rats. Anesthesiology 89:1480–1488

    Article  PubMed  CAS  Google Scholar 

  122. Hendrick KS, Kochanek PM, Melick JA, Scheding JK, Statler KD, Williams DS, Marion DW, Ho C (2001) Cerebral perfusion during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats studied by arterial spin-labeled MRI. Magn Reson Med 46:202–206

    Article  Google Scholar 

  123. Patel PM, Drummond JC, Goskowicz R, Sano T, Cole DJ (1993) The volatile anesthetic isoflurane reduces ischemia induced release of glutamate in rats. J Cereb Blood Flow Metab S685

    Google Scholar 

  124. Bickler PE, Warner DS, Stratmann G, Schulyer JA (2003) Gamma-aminobutyric acid-A receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. Anesth Analg 97:564–571

    Article  PubMed  CAS  Google Scholar 

  125. Baughman VL, Hoffman WE, Thomas C, Miletich DJ, Albrecht RF (1990) Comparison of methohexital and isoflurane on neurologic outcome and histopathology following incomplete ischemia in rats. Anesthesiology 72:85–94

    Article  PubMed  CAS  Google Scholar 

  126. Warner DS, McFarlane G, Todd MM, Ludwig P, McAllister AM (1993) Sevoflurane and halothane reduce focal ischemic brain damage in the rat: possible influence on thermoregulation. Anesthesiology 79:985–992

    Article  PubMed  CAS  Google Scholar 

  127. Warner DS, Ludwig PS, Pearlstein R, Brinkhous AD (1995) Halothane reduces focal ischemic injury in the rat when brain temperature is controlled. Anesthesiology 82:1237–1245

    Article  PubMed  CAS  Google Scholar 

  128. Newberg LA, Michenfelder JD (1983) Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology 59:229–235

    Google Scholar 

  129. Nehls DG, Todd MM, Spetzler RF, Drummond JC, Thompson RA, Johnson PC (1987) A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology 66:453–464

    Article  PubMed  CAS  Google Scholar 

  130. Milde LN, Milde JH, Lanier WL, Michenfelder JD, Gallagher W, Koenig R, Kroening A, Phelps L, Wilson R (1988) Comparison of the effects of isoflurane and thiopental on neurologic outcome and neuropathology after temporary focal ischemia in primates. Anesthesiology 69:905–913

    Article  PubMed  CAS  Google Scholar 

  131. Michenfelder JD, Sundt TM, Fode N, Sharbrough FW (1987) Isoflurane when compared to enflurane and halothane decreases the frequency of cerebral ischemia during carotid endarterectomy. Anesthesiology 67:336–340

    Article  PubMed  CAS  Google Scholar 

  132. Gelb AW, Boisvert DP, Tang C, Lam AM, Marchak BE, Dowman R, Mielke BW (1989) Primate brain tolerance to temporary focal cerebral ischemia during isoflurane or sodium nitroprusside induced hypotension. Anesthesiology 70:678–683

    Article  PubMed  CAS  Google Scholar 

  133. Sarraf-Yazdi S, Sheng H, Miura Y, McFarlane C, Dexter F, Pearlstein R, Warner DS (1998) Relative neuroprotective effects of dizocilpine and isoflurane during focal cerebral ischemia in the rat. Anesth Analg 87:72–78

    PubMed  CAS  Google Scholar 

  134. Kawaguchi M, Drummond JC, Cole DJ, Kelly PJ, Spurlock MP, Patel PM (2004) Effect of isoflurane on neuronal apoptosis in rats subjected to local cerebral ischemia. Anesth Analg 98:798–805

    Article  PubMed  CAS  Google Scholar 

  135. Kawaguchi M, Kimbro JR, Drummond JC, Cole DJ, Kelly PJ, Patel PM (2000) Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia. Anesthesiology 92:1335–1342

    Article  PubMed  CAS  Google Scholar 

  136. Elsersy H, Sheng H, Lynch JR, Moldovan M, Pearlstein RD, Warner DS (2004) Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat. Anesthesiology 100:1160–1166

    Article  PubMed  CAS  Google Scholar 

  137. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    PubMed  CAS  Google Scholar 

  138. Wise-Faberowski L, Zhang H, lng R, Pearlstein RD, Warner DS (2005) Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures. Anesth Analg 101:651–657

    Article  PubMed  CAS  Google Scholar 

  139. Franks NP, Lieb WR (1994) Molecular and cellular mechanism of general anesthesia. Nature 367:607–614

    Article  PubMed  CAS  Google Scholar 

  140. Franks NP, Dickinson R, de Souza SLM, Hall AC, Lieb WR (1998) How does xenon produce anesthesia? Nature 396:324

    Article  PubMed  CAS  Google Scholar 

  141. Jevtovic-Todorovic V, Todorovic SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW (1998) Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4:460–463

    Article  PubMed  CAS  Google Scholar 

  142. Mennerick S, Jeutovic-Todorovic V, Todorovic SM, Shen LG, Olney JW, Zorumski CF (1998) Effects of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 18:9716–9726

    PubMed  CAS  Google Scholar 

  143. Ishimaru MJ, Ikonomidou C, Tenkove TI, Der TC, Dikranian K, Sesma MA, Olney JW (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 408:461–476

    Article  PubMed  CAS  Google Scholar 

  144. Sanders RD, Maze M (2005) Xenon: from stranger to guardian. Curr Opin Anesthesiol 18:405–411

    Article  Google Scholar 

  145. Wilhelm S, Ma D, Maze M, Franks NP (2002) Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 96:1485–1491

    Article  PubMed  CAS  Google Scholar 

  146. Homi HM, Yokoo N, Ma D, Warner DS, Franks NP (2003) The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology 99:876–881

    Article  PubMed  CAS  Google Scholar 

  147. Dingley J, Tooley J, Porter H, Thoresen M (2006) Xenon provides short term neuroprotection in neonatal rat when administered after hypoxia-ischemia. Stroke 37:501–506

    Article  PubMed  CAS  Google Scholar 

  148. David HN, Haelewyn B, Rouillon C, Lecoq M, Chazalviel L, Apiou G, Risso JJ, Lemair M, Abraini JH (2008) Neuroprotective effects of xenon: a therapeutic window of opportunity in rats subjected to transient cerebral ischemia. FASEB J 22:1275–1286

    Article  PubMed  Google Scholar 

  149. Fries M, Nolte KW, Coburn M, Rex S, Timper A, Korrmann K, Stepmann K, Hausler M, Weis J, Rossaint P (2008) Xenon reduces neurohistopathological damage and improves the early neurological deficit after cardiac arrest in pigs. Crit Care Med 36:2420–2426

    Article  PubMed  Google Scholar 

  150. Ma D, Hossain M, Chow A, Arshad M, Battsen RM, Saunders RD, Mehmete H, Edwards AD, Franks NP, Maze M (2005) Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 58:182–193

    Article  PubMed  CAS  Google Scholar 

  151. Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J (2008) Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 39:1307–1313

    Article  PubMed  Google Scholar 

  152. Rajakumaraswamy N, Ma D, Hossain M, Sanders RD, Franks NP, Maze M (2006) Neuroprotective interaction produced by xenon and dexmedetomidine on in vitro and in vivo neuronal injury models. Neurosci Lett 409:128–133

    Article  PubMed  CAS  Google Scholar 

  153. Ma D, Hossain M, Pettet GK, Luo Y, Akimov S, Sanders RD, Franks NP, Maze M (2006) Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 26:199–208

    Article  PubMed  CAS  Google Scholar 

  154. Payne RS, Akca O, Roewer N, Schurr A, Kahl F (2005) Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 1034:147–152

    Article  PubMed  CAS  Google Scholar 

  155. Wang J, Lei B, Popp S, Ming F, Cottrell JE, Kass IS (2007) Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. Neuroscience 145:1097–1107

    Article  PubMed  CAS  Google Scholar 

  156. Wei H, Kang B, Wei W, Liang G, Ming QC, Li Y, Eckenhoff RG (2005) Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 1037:139–147

    Article  PubMed  CAS  Google Scholar 

  157. Kurth CD, Priestley M, Watzman HM, McCann J, Golden J (2001) Desflurane confers neurologic protection for deep hypothermic circulatory arrest in newborn pigs. Anesthesiology 95:959–964

    Article  PubMed  CAS  Google Scholar 

  158. Loepke AW, Priestley M, Schultz SE, McHann J, Golden J, Kurth CD (2002) Desflurane improves neurologic outcome after low-flow cardiopulmonary bypass in newborn pigs. Anesthesiology 97:1521–1527

    Article  PubMed  CAS  Google Scholar 

  159. Haelewyn B, Yvon A, Hanouz TL, MacKenzie ET, Ducouret P, Gerard JL, Roussel S (2003) Desflurane affords greater protection than halothane against focal cerebral ischemia in the rat. Br J Anaesth 91:390–396

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Traystman, R.J. (2010). Effect of Anesthesia in Stroke Models. In: Dirnagl, U. (eds) Rodent Models of Stroke. Neuromethods, vol 47. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-750-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-750-1_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-749-5

  • Online ISBN: 978-1-60761-750-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics