Skip to main content

Microfluidics in Protein Chromatography

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 681))

Abstract

The development of microfluidics and its utilization in a myriad of applications has grown exponentially over the past 15 years. One area that has benefited from the great strides in fabrication of microelectromechanical systems (MEMS) is separations chemistry. Most studies have focused on small molecule and DNA separations; few on protein chromatographic techniques on microchips. This review details recent developments in protein separations on microfluidic platforms and how MEMS have the potential for revolutionizing protein chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applegate, R. W., Squier, J., Vestad, T., Oakey, J., Marr, D. W. M., Bado, P., Dugan, M. A. and Said, A. A. (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip. 6, 422.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, C. C., Zappe, S., Sahin, O., Zhang, X. J., Fish, M., Scott, M. and Solgaard, O. (2004) Design and operation of a microfluidic sorter for drosophila embryos. Sens. Actuators B. 102, 59.

    Article  Google Scholar 

  3. Pamme, N. and Wilhelm, C. (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip. 6, 974.

    Article  PubMed  CAS  Google Scholar 

  4. Sundararajan, N., Kim, D. and Berlin, A. A. (2005) Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab Chip. 5, 350.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, J., Ibanez, A., Chatrathi, M. P. and Escarpa, A. (2001) Electrochemical enzyme immunoassays on microchip platforms. Anal. Chem. 73, 5323.

    Article  PubMed  CAS  Google Scholar 

  6. Seong, G. H., Heo, J. and Crooks, R. M. (2003) Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal. Chem. 75, 3161.

    Article  PubMed  CAS  Google Scholar 

  7. Hadd, A. G., Jacobson, S. C. and Ramsey, J. M. (1999) Microfluidic assays of acetylcholinesterase inhibitors. Anal. Chem. 71, 5206.

    Article  CAS  Google Scholar 

  8. Bromberg, A. and Mathies, R. A. (2003) Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Anal. Chem. 75, 1188.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, J., Ibanez, A. and Chatrathi, M. P. (2002) Microchip-based amperometric immunoassays using redox tracers. Electrophoresis. 23, 3744.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, J., Ibanez, A. and Chatrathi, M. P. (2003) On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. J. Am. Chem. Soc. 125, 8444.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson Hou, C., Milovic, N., Godin, M., Russo, P. R., Chakrabarti, R. and Manalis, S. R. (2006) Label-free microelectronic PCR quantification. Anal. Chem. 78, 2526.

    Article  Google Scholar 

  12. Easley, C. J., Karlinsey, J. M. and Landers, J. P. (2006) On-chip pressure injection for integration of infrared-mediated DNA amplification with electrophoretic separation. Lab Chip. 6, 601.

    Article  PubMed  CAS  Google Scholar 

  13. Alex, H. Y. N., Wang, G., Lin, B. and Chan, W. (2005) Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices. Lab Chip. 5, 1173.

    Article  Google Scholar 

  14. Munce, N. R., Li, J., Herman, P. R. and Lilge, L. (2004) Microfabricated system for parallel single-cell capillary electrophoresis. Anal. Chem. 76, 4983.

    Article  PubMed  CAS  Google Scholar 

  15. Lu, H., Koo, L. Y., Wang, W. M., Lauffenburger, D. A., Griffith, L. G. and Jensen, K. F. (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76, 5257.

    Article  PubMed  CAS  Google Scholar 

  16. MacDonald, M. P., Spalding, G. C. and Dholakia, K. (2003) Microfluidic sorting in an optical lattice. Nature. 426, 421.

    Article  PubMed  CAS  Google Scholar 

  17. Leach, A. M., Wheeler, A. R. and Zare, R. N. (2003) Flow injection analysis in a microfluidic format. Anal. Chem. 75, 967.

    Article  PubMed  CAS  Google Scholar 

  18. McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H. K., Schueller, O. J. A. and Whitesides, G. M. (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 21, 27.

    Article  PubMed  CAS  Google Scholar 

  19. Parikesit, G. O. F., Markesteijn, A. P., Kutchoukov, V. G., Piciu, O., Bossche, A., Westerweel, J., Garini, Y. and Young, I. T. (2005) Electroosmotic flow analysis of a branched U-turn nanofluidic device. Lab Chip. 5, 1067.

    Article  PubMed  CAS  Google Scholar 

  20. Wang, J., Pumera, M., Chatrathi, M. P., Escarpa, A., Konrad, R., Griebel, A., Dorner, W. and Lowe, H. (2002) Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis. 23, 596.

    Article  PubMed  CAS  Google Scholar 

  21. Thorsen, T., Maerkl, S. and Quake, S. R. (2002) Microfluidic large-scale integration. Science. 298, 580.

    Article  PubMed  CAS  Google Scholar 

  22. Seong, G. H. and Crooks, R. M. (2002) Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J. Am. Chem. Soc. 124, 13360.

    Article  PubMed  CAS  Google Scholar 

  23. Quake, S. R. and Scherer, A. (2000) From micro- to nanofabrication with soft materials. Science. 290, 1536.

    Article  PubMed  CAS  Google Scholar 

  24. Paegel, B. M., Yeung, S. H. and Mathies, R. A. (2002) Microchip bioprocessor for integrated nanovolume sample purification and DNA sequencing. Anal. Chem. 74, 5092.

    Article  PubMed  CAS  Google Scholar 

  25. Melin, J., Johansson, H., Soderberg, O., Nikolajeff, F., Landegren, U., Nilsson, M. and Jarvius, J. (2005) Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation. Anal. Chem. 77, 7122.

    Article  PubMed  CAS  Google Scholar 

  26. Garcia, A. L., Ista, L. K., Petsev, D. N., O’Brien, M. J., Bisong, P., Mammoli, A. A., Brueck, S. R. J. and López, G. P. (2005) Electrokinetic molecular separation in nanoscale fluidic channels. Lab Chip. 5, 1271.

    Article  PubMed  CAS  Google Scholar 

  27. Grover, W. H., Ivester, R. H. C., Jensen, E. C. and Mathies, R. A. (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip. 6, 623.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, J., Park, C. and Whitesides, G. M. (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544.

    Article  PubMed  CAS  Google Scholar 

  29. Dusseiller, M. R., Niederberger, B., Städler, B., Falconnet, D., Textor, M. and Vörös, J. (2005) A novel crossed microfluidic device for the precise positioning of proteins and vesicles. Lab Chip. 5, 1387.

    Article  PubMed  CAS  Google Scholar 

  30. Dong, Y., Phillips, K. S. and Cheng, Q. (2006) Immunosensing of staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs). Lab Chip. 6, 675.

    Article  PubMed  CAS  Google Scholar 

  31. Sengupta, S., Battigelli, D. A. and Chang, H. (2006) A micro-scale multi-frequency reactance measurement technique to detect bacterial growth at low bio-particle concentrations. Lab Chip. 6, 682.

    Article  PubMed  CAS  Google Scholar 

  32. Huang, B., Wu, H., Kim, S. and Zare, R. N. (2005) Coating of Poly(dimethylsiloxane) With n-dodecyl-D-maltoside to minimize nonspecific protein adsorption. Lab Chip. 5, 1005.

    Article  PubMed  CAS  Google Scholar 

  33. Dhopeshwarkar, R., Sun, L. and Crooks, R. M. (2005) Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip. 5, 1148–1154.

    Article  PubMed  CAS  Google Scholar 

  34. Gaspar, A., Hernandez, L., Stevens, S. and Gomez, F. A. (2008) Electrochromatography in fritless chromatographic microchips packed with conventional reversed-phase silica particles. Electrophoresis. 29, 1638–1642.

    Article  PubMed  CAS  Google Scholar 

  35. Gaspar, A., Piyasena, M., Daroczi, L. and Gomez, F. A. (2008) Magnetically controlled valve for flow manipulation in polymer microfluidic devices. Microfluid. Nanofluidics. 6, 525–531.

    Article  Google Scholar 

  36. Pugmire, D. L., Waddell, E. A., Haasch, R., Tarlov, M. J. and Locascio, L. E. (2002) Surface characterization of laser-ablated polymers used for microfluidics. Anal. Chem. 74, 871–878.

    Article  PubMed  CAS  Google Scholar 

  37. Lai, S., Wang, S. N., Luo, J., Lee, L. J., Yang, S. T. and Madou, M. J. (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 76, 1832–1837.

    Article  PubMed  CAS  Google Scholar 

  38. Liu, R. H., Yang, J. N., Lenigk, R., Bonanno, J. and Grodzinski, P. (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 76, 1824–1831.

    Article  PubMed  CAS  Google Scholar 

  39. Juang, Y. J., Lee, J. J. and Koelling, K. W. (2002) Hot embossing in microfabrication. Part I: Experimental. Polym. Eng. Sci. 42, 539–550.

    Article  CAS  Google Scholar 

  40. Fiorini, G. S., Lorenz, R. M., Kuo, J. S. and Chiu, D. T. (2004) Rapid prototyping of thermoset polyester microfluidic devices. Anal. Chem. 76, 4697–4704.

    Article  PubMed  CAS  Google Scholar 

  41. Guo, Y., Uchiyama, K., Nakagama, T., Shimosaka, T. and Hobo, T. (2005) An integrated microfluidic device in polyester for electrophoretic analysis of amino acids. Electrophoresis. 26, 1843–1848.

    Article  PubMed  CAS  Google Scholar 

  42. Sahlin, E., Beisler, A. T., Woltman, S. J. and Weber, S. G. (2002) Fabrication of microchannel structures in fluorinated ethylene propylene. Anal. Chem. 74, 4566–4569.

    Article  PubMed  CAS  Google Scholar 

  43. Wu, Z., Jensen, H., Gamby, J., Bai, X. and Girault, H. H. (2004) A flexible sample introduction method for polymer microfluidic chips using a push/pull pressure pump. Lab Chip. 4, 512–515.

    Article  PubMed  CAS  Google Scholar 

  44. Das, C., Fredrickson, C. A., Xia, Z. and Fan, Z. H. (2007) Device fabrication and integration with photodefinable microvalves for protein separation. Sens. Actuators A. 134, 271–277

    Article  Google Scholar 

  45. Bjorkman, H., Ericson, C., Hjerten, S. and Hjort, K. (2001) Diamond microchips for fast chromatography of proteins. Sens. Actuators A. 79, 71–77.

    Google Scholar 

  46. Yin, H., Killeen, K., Brennen, R., Sobek, D., Werlich, M. and Van de Goor, T. (2005) Microfluidic chips for peptide analysis with an integrated HPLC column, sample enrichment column, nanoelectrospray tip. Anal. Chem. 77, 527–533.

    Article  PubMed  CAS  Google Scholar 

  47. Yin, H. and Killeen, K. (2007) The fundamental aspects and applications of Agilent HPLC-Chip. J. Sep. Sci. 30, 1427–1434.

    Article  PubMed  CAS  Google Scholar 

  48. Pavel, A., Levkina, S., Eeltinka, S., Strattonb, T. R., Brennenc, R., Robotti, K., Yinc, H., Killeenc, K., Svec, F. and Frechet, J. M. J. (2008) Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. J. Chromatogr. A. 1200, 55–61.

    Article  Google Scholar 

  49. Emrich, C.A., Medintz, I. L., Chu, W. K. and Mathies, R. A. (2007) Microfabricated two-dimensional electrophoresis device for differential protein expression profiling. Anal. Chem. 79, 7360–7366.

    Article  PubMed  CAS  Google Scholar 

  50. Cui, H., Horiuchi, K., Dutta, P. and Ivory, C. F. (2005) Multistage isoelectric focusing in a polymeric microfluidic chips. Anal. Chem. 77, 7878–7886.

    Article  PubMed  CAS  Google Scholar 

  51. Renzi, R. F., Stamps, J., Horn, B. A., Ferko, S., VanderNoot, V. A., West, J. A. A., Crocker, R., Wiedenman, B., Yee, D. and Fruetel, J. A. (2005) Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Anal. Chem. 77, 435–441.

    Article  PubMed  CAS  Google Scholar 

  52. Zeng, Y. and Harrison, D. J. (2007) Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal. Chem. 79(6), 2289–2295.

    Article  PubMed  CAS  Google Scholar 

  53. Schulze, P., Ludwig, M., Kohler, F. and Belder, D.(2005) Deep UV laser-inducted fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal. Chem. 77, 1325–1329.

    Article  PubMed  CAS  Google Scholar 

  54. Vieillard, J., Mazurczyk, R., Morin, C., Hannes, B., Chevolot, Y., Desbene, P. -L. and Krawczyk, S. (2007) Application of microfluidic chip with integrated optics for electrophoretic separations of proteins. J. Chromatogr. B. 845, 218–225.

    Article  CAS  Google Scholar 

  55. Shadpour, H., Hupert, M. L., Patterson, D., Liu, C., Galloway, M., Stryewski, W., Goettert, J. and Soper, S. A. (2007) Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Anal. Chem. 79, 870–878.

    Article  PubMed  CAS  Google Scholar 

  56. Li, Y., Buch, J. S., Rosenberger, F., DeVoe, D. L. and Lee, C. S. (2004) Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfluidic network. Anal. Chem. 76, 742–748.

    Article  PubMed  CAS  Google Scholar 

  57. Kim, S. M., Burns, M. A. and Hasselbrink, E. F. (2006) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal. Chem. 78, 4779–4785.

    Article  PubMed  CAS  Google Scholar 

  58. Liu, J., Sun, X. and Lee, M. L. (2007) Adsorption-resistant acrylic copolymer for prototyping of microfluidic devices for proteins and peptides. Anal. Chem. 79, 1926–1931.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, Y. -C., Choi, M. H. and Han, J. (2004) Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves. Anal. Chem. 76, 4426–4431.

    Article  PubMed  CAS  Google Scholar 

  60. Herr, A. E., Molho, J. I., Drouvalakis, K. A., Mikkelsen, J. C., Utz, P. J., Santiago, J. G. and Keey, T. W. (2003) On-chip coupling of isoelectric focusing and free solution electrophoretic for multidimensional separations. Anal. Chem. 75, 1180–1187.

    Article  PubMed  CAS  Google Scholar 

  61. Song, Y. -A., Hsu, S., Stevens, A.L. and Han, J. (2006) Continuous-flow pI-based sorting of proteins and peptides in a microfluidic chip using diffusion potential. Anal. Chem. 78, 3528–3536.

    Article  PubMed  CAS  Google Scholar 

  62. Cooper, J. W., Che, J., Li, Y. and Lee, C. S. (2003) Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry. Anal. Chem. 75, 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  63. Hardouin, J., Joubert-Caron, R. and Caron, M. J. (2007) HPLC-chip-mass spectrometry for protein signature identifications. Sep. Sci. 30, 1482–1487.

    Article  CAS  Google Scholar 

  64. Xie, J., Miao, Y., Shih, J., Tai, Y. -C. and Lee, T. D. (2005) Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptides mixtures. Anal. Chem. 77, 6947–6953.

    Article  PubMed  CAS  Google Scholar 

  65. Ghitun, M., Bonneil, E., Fortier, M. -H., Yin, H., Killeen, K. and Thibault, P. J. (2006) Integrated microfluidic devices with enhanced separation performance: application to phosphoproteome analyses of differentiated cell model systems. Sep. Sci. 29, 1539–1549.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this research by grants from the National Science Foundation (CHE-0515363 and DMR-0351848).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gomez, F.A. (2011). Microfluidics in Protein Chromatography. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 681. Humana Press. https://doi.org/10.1007/978-1-60761-913-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-913-0_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-912-3

  • Online ISBN: 978-1-60761-913-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics