Skip to main content

Small RNA Target Genes and Regulatory Connections in the Vibrio cholerae Quorum Sensing System

  • Protocol
  • First Online:
Quorum Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 692))

Abstract

The two-component quorum sensing (QS) system, first described in the marine bacterium Vibrio harveyi and evolutionarily conserved among members of the genus Vibrio, has been best studied in the human pathogen Vibrio cholerae (1, 2). In the V. cholerae QS system, the response to the accumulation of extracellular autoinducers triggers a signaling cascade resulting in the transcription of four small regulatory RNAs (sRNAs). Our results support the model that the QS sRNAs bind to the 5′ untranslated region of multiple mRNAs and alter the fate of one in a positive manner and several others in a negative manner. This mechanism ensures the proper timing of the QS response, which includes the expression of traits critical for virulence and for the formation of biofilms (2–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammer, B. K., and Bassler, B. L. (2008) Signal integration in the Vibrio harveyi and Vibrio cholerae quorum sensing circuits, Washington, DC Stephen C Winans and Bonnie L. Bassler 323–332.

    Google Scholar 

  2. Lenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S., and Bassler, B. L. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae, Cell 118, 69–82.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K., and Bassler, B. L. (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae, Cell 110, 303–314.

    Article  PubMed  CAS  Google Scholar 

  4. Zhu, J., Miller, M. B., Vance, R. E., Dziejman, M., Bassler, B. L., and Mekalanos, J. J. (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae, Proc Natl Acad Sci USA 99, 3129–3134.

    Article  PubMed  CAS  Google Scholar 

  5. Svenningsen, S. L., Tu, K. C., and Bassler, B. L. (2009) Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing, EMBO J 28, 429–439.

    Article  PubMed  CAS  Google Scholar 

  6. Hammer, B. K., and Bassler, B. L. (2009) Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation, J Bacteriol 191, 169–177.

    Article  PubMed  CAS  Google Scholar 

  7. Hammer, B. K., and Bassler, B. L. (2003) Quorum sensing controls biofilm formation in Vibrio cholerae, Mol Microbiol 50, 101–104.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu, J., and Mekalanos, J. J. (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae, Dev Cell 5, 647–656.

    Article  PubMed  CAS  Google Scholar 

  9. Hammer, B. K., and Bassler, B. L. (2007) Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae, Proc Natl Acad Sci USA 104, 11145–11149.

    Article  PubMed  CAS  Google Scholar 

  10. Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L., and Stabb, E. V. (2006) New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ, Appl Environ Microbiol 72, 802–810.

    Article  PubMed  CAS  Google Scholar 

  11. Dehio, C., and Meyer, M. (1997) Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli, J Bacteriol 179, 538–540.

    PubMed  CAS  Google Scholar 

  12. Vogel, J., and Wagner, E. G. (2007) Target identification of small noncoding RNAs in bacteria, Curr Opin Microbiol 10, 262–270.

    Article  PubMed  CAS  Google Scholar 

  13. Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs, Curr Opin Microbiol 10, 134–139.

    Article  PubMed  CAS  Google Scholar 

  14. Tjaden, B. (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria, Nucleic Acids Res 36, W109–W113.

    Article  PubMed  CAS  Google Scholar 

  15. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., and Pease, L. R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene 77, 61–68.

    Article  PubMed  CAS  Google Scholar 

  16. Skorupski, K., and Taylor, R. K. (1996) Positive selection vectors for allelic exchange, Gene 169, 47–52.

    Article  PubMed  CAS  Google Scholar 

  17. de Boer, H. A., Comstock, L. J., and Vasser, M. (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters, Proc Natl Acad Sci USA 80, 21–25.

    Article  PubMed  Google Scholar 

  18. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res 31, 3406–3415.

    Article  PubMed  CAS  Google Scholar 

  19. Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004) Fast and effective prediction of microRNA/target duplexes, RNA 10, 1507–1517.

    Article  PubMed  CAS  Google Scholar 

  20. Schauder, S, Shokat, K., Surette, M. G., and Bassler, B.L. (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule, Mol Microbiol 41, 463–476.

    Google Scholar 

  21. Higgins, D. A., Pomianek, M. E., Kraml, C. M., Taylor, R. K., Semmelhack, M. F., and Bassler, B. L. (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production, Nature 450, 883–886.

    Google Scholar 

Download references

Acknowledgment

This material is based upon the work supported by the National Science Foundation under Grant No. 0919821. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hammer, B.K., Svenningsen, S.L. (2011). Small RNA Target Genes and Regulatory Connections in the Vibrio cholerae Quorum Sensing System. In: Rumbaugh, K. (eds) Quorum Sensing. Methods in Molecular Biology, vol 692. Humana Press. https://doi.org/10.1007/978-1-60761-971-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-971-0_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-970-3

  • Online ISBN: 978-1-60761-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics