Skip to main content

De Novo Generation of Satellite DNA-Based Artificial Chromosomes by Induced Large-Scale Amplification

  • Protocol
  • First Online:
Mammalian Chromosome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 738))

Abstract

Mammalian artificial chromosomes (MACs) are engineered chromosomes with defined genetic content that can function as non-integrating vectors with large carrying capacity and stability. The large carrying capacity allows the engineering of MACs with multiple copies of the same transgene, gene complexes, and to include regulatory elements necessary for the regulated expression of transgene(s). In recent years, different approaches have been explored to generate MACs (Vos Curr Opin Genet Dev 8:351–359, 1998; Danielle et al. Trends Biotech 23:573–583, 2005; Duncan and Hadlaczky Curr Opin Biotech 18:420–424, 2007): (1) the de novo formation by centromere seeding, the “bottom-up” approach, (2) the truncation of natural chromosomes or the modification of naturally occurring minichromosomes, the “top-down” approach, and (3) the in vivo “inductive” approach. Satellite DNA-based artificial chromosomes (SATACs) generated by the in vivo “inductive” method have the potential to become an efficient tool in diverse gene technology applications such as cellular protein manufacturing (Kennard et al. BioPharm Int 20:52–59, 2007; Kennard et al. Biotechnol Bioeng 104:526–539, 2009; Kennard et al. Biotechnol Bioeng 104:540–553, 2009), transgenic animal production (Telenius et al. Chromosome Res 7:3–7, 1999; Co et al. Chromosome Res 8:183–191, 2000; Monteith et al. Methods Mol Biol 240:227–242, 2003), and ultimately a safe vector for gene therapy (Vanderbyl et al. Stem Cells 22:324–333, 2004; Vanderbyl et al. Exp Hematol 33:1470–1476, 2005; Katona et al. Cell. Mol. Life Sci 65:3830–3838, 2008). A detailed protocol for the de novo generation of satellite DNA-based artificial chromosomes (SATACs) via induced large-scale amplification is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vos J-MH (1998) Mammalian artificial chromosomes as tools for gene therapy. Curr Opin Genet Dev 8, 351–359.

    Article  PubMed  CAS  Google Scholar 

  2. Danielle V. Irvine, Margaret L. Shaw, K. H. Andy Choo and Richard Saffery (2005). Engineering chromosomes for delivery of therapeutic genes. Trends Biotech. 23, (12) 573–583.

    Article  Google Scholar 

  3. Duncan, A., Hadlaczky, Gy. (2007). Chromosomal Engineering. Curr Opin Biotech 18, 420–424.

    PubMed  CAS  Google Scholar 

  4. Kennard M.L, Goosney D.G, Ledebur H.C. 2007. Generating stable, high–expressing cell lines for recombinant protein manufacture. BioPharm Int 20, (3):52–59.

    CAS  Google Scholar 

  5. Kennard, M.L., Goosney, D.L., Monteith, D., Roe, S., Fischer, D., Mott, J. (2009). Auditioning of CHO host cell lines using the Artificial Chromosome Expression (ACE) technology. Biotechnology and Bioengineering 104(3), 526–539.

    Article  PubMed  CAS  Google Scholar 

  6. Kennard, M.L., Goosney, D.L., Monteith, D., Zhang, L., Moffat, M., Fischer, D., Mott, J. (2009). The generation of stable, high MAb expressing CHO cell lines based on the Artificial Chromosome Expression (ACE) technology. Biotechnology and Bioengineering 104(3), 540–553.

    Article  PubMed  CAS  Google Scholar 

  7. Telenius, H., Szeles, A., Kereső, J., Csonka, E., Praznovszky, T., Imreh, S., Maxwell, A., Perez, C.F., Drayer, J.I., Hadlaczky, Gy. (1999). Stability of a functional murine satellite DNA-based artificial chromosome across mammalian species. Chromosome Res. 7, 3–7.

    Article  PubMed  CAS  Google Scholar 

  8. Co, D.O., Borowski, A.H., Leung, J.D., van der Kaa, J., Hengst, S., Platenburg, G., Pieper, F.R., Perez, C.F., Jirik, F.R., Drayer, J.I. (2000). Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Res. 8, 183–191.

    Article  PubMed  CAS  Google Scholar 

  9. Monteith, D.P., Leung, J.D., Borowski, A.H., Co, D.O., Praznovski, T., Jiric, F.R., Hadlaczky, Gy., and Perez, C.F. (2003). Pronuclear microinjection of purified artificial chromosomes for generation of transgenic mice: Pick-and-Inject Technique. In Mammalian Artificial Chromosomes: Methods and Protocols. Eds.: Sgaramella, V. and Eridani, S. Methods in Mol. Biol. 240, 227–242

    Google Scholar 

  10. S. Vanderbyl, G. N. MacDonald, S. Sidhu, L. Gung, A. Telenius, C. Perez, E. Perkins (2004). Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells. 22, 324–333.

    Article  PubMed  CAS  Google Scholar 

  11. Vanderbyl SL, Sullenbarger B, White N, Perez CF, MacDonald GN, Stodola T, Bunnell BA, Ledebur HC Jr, Lasky LC. (2005). Transgene expression after stable transfer of a mammalian artificial chromosome into human hematopoietic cells. Exp Hematol. 33(12), 1470–1476.

    Article  PubMed  CAS  Google Scholar 

  12. R. L. Katona, I. Sinkó, G. Holló, K. Székely Szűcs, T. Praznovszky, J. Kereső, E. Csonka, K. Fodor, I. Cserpán, B. Szakál, P. Blazsó, A. Udvardy and G. Hadlaczky (2008). A combined artificial chromosome-stem cell therapy method in a model experiment aimed at the treatment of Krabbe`s disease in the Twitcher mouse. Cell. Mol. Life Sci. 65, 3830–3838.

    Article  PubMed  CAS  Google Scholar 

  13. Hadlaczky, Gy., Praznovszky, T., Cserpán, I., Kereső, J., Péterfy, M., Kelemen, I., Atalay, E., Szeles, A., Szelei, J., Tubak, V. (1991). Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene. Proc. Natl. Acad. Sci. USA. 88, 8106–8110.

    Article  PubMed  CAS  Google Scholar 

  14. Praznovszky, T. Kereső, J. Tubak, V., Cserpán, I., Fátyol, K., Hadlaczky, Gy. (1991). De novo chromosome formation in rodent cells. Proc. Natl. Acad. Sci. USA. 88, 11042–11046.

    Article  PubMed  CAS  Google Scholar 

  15. Kereső, J., Praznovszky, T., Cserpán, I., Fodor, K., Katona, R., Csonka, E., Fátyol, K., Holló, Gy., Szeles, A., Ross, A.R., Sumner, A.T., Szalay, A.A., Hadlaczky, Gy. (1996). De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes. Chromosome Res. 4, 226–239.

    Article  PubMed  Google Scholar 

  16. Holló, Gy., Kereső, J., Praznovszky, T., Cserpán, I., Fodor, K., Katona, R., Csonka, E., Fátyol, K., Szeles, A., Szalay, A.A., Hadlaczky, Gy. (1996). Evidence for a megareplicon covering megabases of centromeric chromosome segments. Chromosome Res. 4, 240–247.

    Article  PubMed  Google Scholar 

  17. Csonka, E., Cserpán, I., Fodor, K., Holló, Gy., Katona, R., Kereső, J., Praznovszky, T., Szakál, B., Telenius, A., deJong, G., Udvardy, A., Hadlaczky, Gy. (2000). Novel Generation of Human Satellite DNA-based Artificial Chromosomes in Mammalian Cells. J Cell Sci. 113, 3207–3216.

    PubMed  CAS  Google Scholar 

  18. Hadlaczky, Gy. (2001) Satellite DNA-based artificial chromosomes for use in gene therapy. Current Opinion in Molecular Therapeutics 3(2), 125–132.

    PubMed  CAS  Google Scholar 

  19. Chen, C, Okayama, H. (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752.

    PubMed  CAS  Google Scholar 

  20. Macgregor, H., Varley, J. (1983) Mitotic chromosomes. Working with animal chromosomes. John Wiley & Sons Ltd.

    Google Scholar 

  21. Lindenbaum, M., Perkins, E., Csonka, E., Greene, A., Fleming, E., Hadlaczky, Gy., MacDonald, N., Maxwell, A., Perez, C. and Ledebur, H.C. Jr. (2004). The ACE System: engineering artificial chromosomes to rapidly generate high-expressing cell lines for manufacture of recombinant proteins. Nucl. Acids Res. 32(21), e172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Csonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Csonka, E. (2011). De Novo Generation of Satellite DNA-Based Artificial Chromosomes by Induced Large-Scale Amplification. In: Hadlaczky, G. (eds) Mammalian Chromosome Engineering. Methods in Molecular Biology, vol 738. Humana Press. https://doi.org/10.1007/978-1-61779-099-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-099-7_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-098-0

  • Online ISBN: 978-1-61779-099-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics