Skip to main content

Synthesis and Characterization of Self-Assembled DNA Nanostructures

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

Abstract

The past decade witnessed the fast evolvement of structural DNA nanotechnology, which uses DNA as blueprint and building material to construct artificial nanostructures. Using branched DNA as the main building block (also known as a “tile”) and cohesive single-stranded DNA (ssDNA) ends to designate the pairing strategy for tile–tile recognition, one can rationally design and assemble complicated nanoarchitectures from specifically designed DNA oligonucleotides. Objects in both two- and three-dimensions with a large variety of geometries and topologies have been built from DNA with excellent yield; this development enables the construction of DNA-based nanodevices and DNA-template directed organization of other molecular species. The construction of such nanoscale objects constitutes the basis of DNA nanotechnology. This chapter describes the protocol for the preparation of ssDNA as starting material, the self-assembly of DNA nanostructures, and some of the most commonly used methods to characterize the self-assembled DNA nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman, N. C. (1982) Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247.

    Article  CAS  Google Scholar 

  2. Chen J., and Seeman, N. C. (1991) The ­synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633.

    Article  CAS  Google Scholar 

  3. Seeman, N. C. (2003) DNA in a material world. Nature 421, 427–431.

    Article  Google Scholar 

  4. Deng, Z. X., Lee, S. H., and Mao, C. D. (2005) DNA as nanoscale building blocks. J. Nanosci. Nanotechnol. 5, 1954–1963.

    Article  CAS  Google Scholar 

  5. Turberfield, A. J. (2003) DNA as an engineering material. Phys. World 16, 43–46.

    CAS  Google Scholar 

  6. Lin, C., Liu, Y., Rinker, S., and Yan, H. (2006) DNA Tile based self-assembly: building ­complex nanoarchitectures. ChemphysChem 7, 1641–1647.

    Article  CAS  Google Scholar 

  7. Feldkamp, U., and Niemeyer, C. M. (2006) Rational fesign of DNA nanoarchitectures. Angew. Chem. Int. Ed. 45, 1856–1876.

    Article  CAS  Google Scholar 

  8. Aldaye, F. A., Palmer, A. L., and Sleiman, H. F. (2008) Assembling materials with DNA as the guide. Science 321, 1795–1799.

    Article  CAS  Google Scholar 

  9. Yan, H., Park, S. H., Ginkelstein, G., Reif, J. H., and LaBean, T. H. (2003) DNA templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884.

    Article  CAS  Google Scholar 

  10. Le, J. D., Pinto, Y., Seeman, N. C., Musier-Forsyth, K., Taton, T. A., and Kiehl, R. A. (2004) DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347.

    Article  CAS  Google Scholar 

  11. Zhang, J., Liu, Y., Ke, Y., and Yan, H. (2006) Periodic square-like gold nanoparticle arrays template by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248–251.

    Article  CAS  Google Scholar 

  12. Sharma, J., Chhabra, R., Liu, Y., Ke, Y., and Yan, H. (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 45, 730–735.

    Article  CAS  Google Scholar 

  13. Zheng, J., Constantinou, P. E., Micheel, C., Alivisatos, A. P., Kiehl, R. A., and Seeman N. C. (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504.

    Article  CAS  Google Scholar 

  14. Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., and Yan, H. (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116.

    Google Scholar 

  15. Sharma, J., Ke, Y., Lin, C., Chhabra, R., Wang, Q., Nangreave, J., Liu, Y., and Yan, H. (2008) DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. Angew. Chem. Int. Ed. 47, 5157–5159.

    Article  CAS  Google Scholar 

  16. Aldaye, F. A., and Sleiman, H. F. (2006) Sequential self-assembly of a DNA hexagon as a template for the organization of gold ­nanoparticles. Angew. Chem. Int. Ed. 45, 2204–2209.

    Article  CAS  Google Scholar 

  17. Liu, Y., Lin, C., Li, H., and Yan, H. (2005) Aptamer directed self-assembly of proteins on a DNA nanostructure. Angew. Chem. Int. Ed. 44, 4333–4338.

    Article  CAS  Google Scholar 

  18. Chhabra, R., Sharma, J., Ke, Y., Liu, Y., Rinker, S., Lindsay, S., and Yan, H. (2007) Spatially addressable multiprotein nano-arrays template by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305.

    Article  CAS  Google Scholar 

  19. Rinker, S., Ke, Y., Liu, Y., Chhabra, R., and Yan, H. (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol 3, 418–422.

    Article  CAS  Google Scholar 

  20. Duckworth, B. P., Chen, Y., Wollack, J. W., Sham, Y., Mueller, J. D., Taton, T. A., and Distefano, M. D. (2007) A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. Angew. Chem. Int. Ed. 46, 8819–8822.

    Article  CAS  Google Scholar 

  21. Malo, J., Mitchell, J. C., Vénien-Bryan, C., Harris, J. R., Wille, H., Sherratt, D. J., and Turberfield, A. J. (2005) Engineering a 2D protein-DNA crystal. Angew. Chem. Int. Ed. 44, 3057–3061.

    Article  CAS  Google Scholar 

  22. Liedl, T., Sobey, T. L., and Simmel, F. C. (2007) DNA based nano-devices. Nanotoday 2, 36–41.

    Google Scholar 

  23. Seeman N. C. (2005) From genes to machines: DNA nanomechanical devices. Trends. Biochem. Sci. 30, 119–125.

    Article  CAS  Google Scholar 

  24. Bath, J., and Turberfield, A. J. (2007) DNA nanomachines. Nat. Nanotechnol. 2, 275–284.

    Article  CAS  Google Scholar 

  25. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

    Article  CAS  Google Scholar 

  26. Birac, J. J., Sherman, W. B., Kopatsh, J., Constantinou, P. E., and Seeman, N. C. (2006) GIDEON, A program for design in structural DNA nanotechnology. J. Mol. Graphics Model. 25, 470–480.

    Article  CAS  Google Scholar 

  27. Williams, S., Lund, K., Lin, C., Wonka, P., Lindsay, S., and Yan, H. (2008) Tiamat: a three-dimensional editing tool for complex DNA structures. The 14th International Meeting on DNA Computing, Prague, Czech Republic.

    Google Scholar 

  28. Nanoengineer-1 is a molecular design program developed by Nanorex, Inc (Bloomfield Hills, MI). http://nanoengineer-1.com/content/

  29. Seeman, N. C. (1990) De novo design of sequences for nucleic acid structure engineering. J. Biomol. Struct. Dynam. 8, 573–581.

    CAS  Google Scholar 

  30. Wei, B., Wang, Z., and Mi, Y. (2007) Uniquimer: software of de novo DNA sequence generation for DNA self-assembly–an introduction and the related applications in DNA self-assembly. J. Comput. Theor. Nanosci. 4, 133–141.

    CAS  Google Scholar 

  31. Ke, Y., Liu, Y., Zhang, J., and Yan, H. (2006) A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 128, 4414–4421.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation (NSF), the Army Research Office (ARO), and the Technology and Research Initiative Fund from Arizona State University to Y.L. and by grants from NSF, ARO, Air Force Office of Scientific Research, Office of Naval Research, and the National Institute of Health to H.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxiang Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lin, C., Ke, Y., Chhabra, R., Sharma, J., Liu, Y., Yan, H. (2011). Synthesis and Characterization of Self-Assembled DNA Nanostructures. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics