Skip to main content

Design and Synthesis of Biofunctionalized Metallic/Magnetic Nanomaterials

  • Protocol
  • First Online:
Bioconjugation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 751))

Abstract

Organic solvent-soluble nanocrystals suitable for magnetic resonance imaging are prepared by two routes, namely, a coprecipitation method and a multiple-step thermal decomposition method (seed-mediated growth). The size, shape, crystallinity, phase, and composition of the prepared nanocrystals are determined by various characterization techniques, including transmission electron microscopy, vibrating-sample magnetometer, X-ray diffraction, and inductively coupled plasma mass spectroscopy. Subsequently, the organic-soluble nanocrystals are rendered water-soluble by two methods, the microemulsion method and the ligand exchange method, for biomedical applications. Detailed protocols for the preparation of water-soluble nanocrystals, as well as procedures for drug-loading and antibody conjugation to the water-soluble nanocrystals are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G. (2003) Monodisperse MFe2O4 (M  =  Fe, Co, Mn) nanoparticles. J. Amer. Chem. Soc. 126, 273–279.

    Article  Google Scholar 

  2. Huh, Y. M., Jun, Y. w., Song, H. T., Kim, S., Choi, J. s., Lee, J. H., Yoon, S., Kim, K. S., Shin, J. S., Suh, J. S., and Cheon, J. (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 127, 12387–12391.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, J.-H., Huh, Y.-M., Jun, Y.-w., Seo, J.-w., Jang, J.-t., Song, H.-T., Kim, S., Cho, E.-J., Yoon, H.-G., Suh, J.-S., and Cheon, J. (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99.

    Article  PubMed  CAS  Google Scholar 

  4. S. Lefebure, E. D., Cabuil, V., Neveu, S. and Massart, R. (1998) Monodisperse magnetic nanoparticles: Preparation and dispersion in water and oils. J. Mater. Res. 13, 2975–2981.

    Article  Google Scholar 

  5. Massart, R. (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248.

    Article  Google Scholar 

  6. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R. N. (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, T., Ge, J., Hu, Y., and Yin, Y. (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett. 7, 3203–3207.

    Article  PubMed  CAS  Google Scholar 

  8. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., and Garcia-Celma, M. J. (2005) Nano-emulsions. Curr. Opin. in Colloid Interface Sci. 10, 102–110.

    Article  CAS  Google Scholar 

  9. Lee, S.-J., Jeong, J.-R., Shin, S.-C., Kim, J.-C., Chang, Y.-H., Chang, Y.-M., and Kim, J. D. J.-D. (2004) Nanoparticles of magnetic ferric oxides encapsulated with poly(D,L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J. Magn. Magn. Mater. 272 – 276, 2432–2433.

    Article  Google Scholar 

  10. Lee, J., Yang, J., Seo, S.-B., Ko, H.-J., Suh, J.-S., Huh, Y.-M., Haam, S., (2008) Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance ­imaging. Nanotechnology 19, 485101.

    Article  PubMed  Google Scholar 

  11. Lim, E.-K., Yang, J., Park, M.-y., Park, J., Suh, J.-S., Yoon, H.-G., Huh, Y.-M., and Haam, S. (2008) Synthesis of water soluble PEGylated magnetic complexes using mPEG-fatty acid for biomedical applications. Colloids Surf. B: Biointerfaces 64, 111–117.

    Article  CAS  Google Scholar 

  12. Yang, J., Lee, T.-I., Lee, J., Lim, E.-K., Hyung, W., Lee, C.-H., Song, Y. J., Suh, J.-S., Yoon, H.-G., Huh, Y.-M., and Haam, S. (2007) Synthesis of ultrasensitive magnetic resonance contrast agents for cancer imaging using PEG-fatty acid. Chem. Mater. 19, 3870–3876.

    Article  CAS  Google Scholar 

  13. Eun-Kyung Lim, J. Y., Jin-Suck Suh, Yong-Min Huh, Seungjoo Haam. (2009) Self-labeled magneto nanoprobes using tri-aminated polysorbate 80 for detection of human mesenchymal stem cells. J. Mater. Chem. 19, 8958–8963.

    Article  Google Scholar 

  14. Zaitsev, V. S., Filimonov, D. S., Presnyakov, I. A., Gambino, R. J., and Chu, B. (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J. Colloid Interface Sci. 212, 49–57.

    Article  PubMed  CAS  Google Scholar 

  15. Yang, J., Lee, C.-H., Ko, H.-J., Suh, J.-S., Yoon, H.-G., Lee, K., Huh, Y.-M., and Haam, S. (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew. Chem. Int. Ed. 119, 8992–8995.

    Article  Google Scholar 

  16. Yang, J., Lim, E.-K., Lee, H. J., Park, J., Lee, S. C., Lee, K., Yoon, H.-G., Suh, J.-S., Huh, Y.-M., and Haam, S. (2008) Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection, Biomaterials 29, 2548–2555.

    Article  PubMed  CAS  Google Scholar 

  17. Yang, J., Lee, C.-H., Park, J., Seo, S., Lim, E.-K., Song, Y., Suh, J.-S., Yoon, H.-G., Huh, Y.-M., Haam, S., (2007) Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J. Mater. Chem. 17, 2695–2699.

    Article  CAS  Google Scholar 

  18. Zaitsev, V. S., Filimonov, D. S., Presnyakov, I. A., Gambino, R. J., and Chu, B. (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J. Colloid Interface Sci. 212, 49–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungjoo Haam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lim, EK., Haam, S., Lee, K., Huh, YM. (2011). Design and Synthesis of Biofunctionalized Metallic/Magnetic Nanomaterials. In: Mark, S. (eds) Bioconjugation Protocols. Methods in Molecular Biology, vol 751. Humana Press. https://doi.org/10.1007/978-1-61779-151-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-151-2_36

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-150-5

  • Online ISBN: 978-1-61779-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics