Skip to main content

A Computational Method to Search for DNA Structural Motifs in Functional Genomic Elements

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

  • 2991 Accesses

Abstract

The rapidly increasing availability of DNA sequence data from modern high-throughput experimental techniques has created the need for computational algorithms to aid in motif discovery in genomic DNA. Such algorithms are typically used to find a statistical representation of the nucleotide sequence of the target site of a DNA-binding protein within a collection of DNA sequences that are thought to contain segments to which the protein is bound. A major assumption of these algorithms is that the protein recognizes the primary order of nucleotides in the sequence. However, proteins can also recognize the three-dimensional shape and structure of DNA. To account for this, we developed a computational method to predict the local structural profiles of any set of DNA sequences and then to search within these profiles for common DNA structural motifs. Here we describe the details of this method and use it to find a DNA structural motif in the Saccharomyces cerevisiae yeast genome that is associated with binding of the transcription factor RLM1, a component of the protein kinase C-mediated MAP kinase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harbison, C. T., Gordon, D. B., Lee, T. I., et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.

    Article  PubMed  CAS  Google Scholar 

  2. Stormo, G. D. (2000) DNA binding sites: representation and discovery. Bioinformatics 16, 16–23.

    Article  PubMed  CAS  Google Scholar 

  3. Sathyapriya, R., Vijayabaskar, M. S., and Vishveshwara, S. (2008) Insights into protein–DNA interactions through structure network analysis. PLoS Comput. Biol. 4, e1000170.

    Article  PubMed  CAS  Google Scholar 

  4. Otwinowski, Z., Schevitz, R. W., Zhang, R., et al. (1988) Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335, 321–329.

    Article  PubMed  CAS  Google Scholar 

  5. Brennan, R. G., and Matthews, B. W. (1989) Structural basis of DNA-protein recognition. Trends Biochem. Sci. 14, 286–290.

    Article  PubMed  CAS  Google Scholar 

  6. Gartenberg, M. R., and Crothers, D. M. (1988) DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature 333, 824–829.

    Article  PubMed  CAS  Google Scholar 

  7. Price, M. A., and Tullius, T. D. (1992) Using hydroxyl radical to probe DNA structure. Methods Enzymol. 212, 194–219.

    Article  PubMed  CAS  Google Scholar 

  8. Price, M. A., and Tullius, T. D. (1993) How the structure of an adenine tract depends on sequence context: a new model for the structure of TnAn DNA sequences. Biochemistry 32, 127–136.

    Article  PubMed  CAS  Google Scholar 

  9. Balasubramanian, B., Pogozelski, W. K., and Tullius, T. D. (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA 95, 9738–9743.

    Article  PubMed  CAS  Google Scholar 

  10. Jain, S. S., and Tullius, T. D. (2008) Footprinting protein-DNA complexes using the hydroxyl radical. Nat. Protoc. 3, 1092–1100.

    Article  PubMed  CAS  Google Scholar 

  11. Greenbaum, J. A., Pang, B., and Tullius, T. D. (2007) Construction of a genome-scale structural map at single-nucleotide resolution. Genome Res., 17, 947–953.

    Article  PubMed  CAS  Google Scholar 

  12. Greenbaum, J. A., Parker, S. C. J., and Tullius, T. D. (2007) Detection of DNA structural motifs in functional genomic elements. Genome Res. 17, 940–946.

    Article  PubMed  CAS  Google Scholar 

  13. Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A., and Wootton, J. (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–214.

    Article  PubMed  CAS  Google Scholar 

  14. MacIsaac, K. D., Wang, T., Gordon, D. B., Gifford, D. K., Stormo, G. D., and Fraenkel, E. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113.

    Article  PubMed  Google Scholar 

  15. Stajich, J. E., Block, D., Boulez, K., et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1618.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu, C., Byers, K., McCord, R., et al. (2009) High-resolution DNA binding specificity analysis of yeast transcription factors. Genome Res. 19, 556–566.

    Article  PubMed  CAS  Google Scholar 

  17. Santelli, E., and Richmond, T. J. (2000) Crystal structure of MEF2A core bound to DNA at 1.5 Å resolution. J. Mol. Biol. 297, 437–449.

    Article  PubMed  CAS  Google Scholar 

  18. Morozov, A. V., and Siggia, E. D. (2007) Connecting protein structure with predictions of regulatory sites. Proc. Natl. Acad. Sci. USA 104, 7068–7073.

    Article  PubMed  CAS  Google Scholar 

  19. Spellman, P. T., Sherlock, G., Zhang, M. Q., et al. (1998) Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297.

    PubMed  CAS  Google Scholar 

  20. Pavlidis, P., and Noble, W. S. (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19, 295–296.

    Article  PubMed  CAS  Google Scholar 

  21. Schneider, T. D., and Stephens, R. M. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100.

    Article  PubMed  CAS  Google Scholar 

  22. Crooks, G. E., Hon, G., Chandonia, J., and Brenner, S. E. (2004) WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190.

    Article  PubMed  CAS  Google Scholar 

  23. Kent, W. J., Sugnet, C. W., Furey, T. S., et al. (2002) The human genome browser at UCSC. Genome Res. 12, 996–1006.

    PubMed  CAS  Google Scholar 

  24. Karolchik, D., Kuhn, R. M., Baertsch, R., et al. (2008) The UCSC genome browser database: 2008 update. Nucleic Acids Res. 36, D773–779.

    Article  PubMed  CAS  Google Scholar 

  25. Segal, E., and Widom, J. (2009) Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr. Opin. Struct. Biol. 19, 65–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eric Bishop for providing the Perl module that is used to predict hydroxyl radical cleavage patterns for any DNA sequence. SCJP was the recipient of a National Academies Ford Foundation Dissertation Fellowship. This work was supported by an ENCODE Technology Development Grant from the National Human Genome Research Institute of the National Institutes of Health to TDT (HG003541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Tullius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Parker, S.C., Harlap, A., Tullius, T.D. (2011). A Computational Method to Search for DNA Structural Motifs in Functional Genomic Elements. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics