Skip to main content

In Silico Prediction of Transcriptional Factor-Binding Sites

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

The recognition of transcription factor binding sites (TFBSs) is the first step on the way to deciphering the DNA regulatory code. A large variety of computational approaches and corresponding in silico tools for TFBS recognition are available, each having their own advantages and shortcomings. This chapter provides a brief tutorial to assist end users in the application of these tools for functional characterization of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolchanov, N. A., Merkulova, T. I., Ignatieva, E. V., et al. (2007) Combined experimental and computational approaches to study the regulatory elements in eukaryotic genes. Brief Bioinform 8, 266–274.

    Article  PubMed  CAS  Google Scholar 

  2. Elnitski, L., Jin, V. X., Farnham, P. J., et al. (2006) Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res 16, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  3. Schneider, T. D., Stormo, G. D., Gold, L., et al. (1986) Information content of binding sites on nucleotide sequences. J Mol Biol 188, 415–431.

    Article  PubMed  CAS  Google Scholar 

  4. Day, W. H., McMorris, F. R. (1992) Threshold consensus methods for molecular sequences. J Theor Biol 159, 481–489.

    Article  PubMed  CAS  Google Scholar 

  5. MacIsaac, K. D., Fraenkel, E. (2006) Practical strategies for discovering regulatory DNA sequence motifs. PLoS Comput Biol 2, e36.

    Article  PubMed  Google Scholar 

  6. Schmid, C. D., Perier, R., Praz, V., et al. (2006) EPD in its twentieth year: towards complete promoter coverage of selected model organisms. Nucleic Acids Res 34, 82–85.

    Article  Google Scholar 

  7. Karolchik, D., Hinrichs, A. S., Kent, W. J. (2009) The UCSC Genome Browser. Curr Protoc Bioinform 28, 1.4.1–1.4.26.

    Google Scholar 

  8. Yamashita, R., Wakaguri, H., Sugano, S., et al. (2010) DBTSS provides a tissue specific dynamic view of Transcription Start Sites. Nucleic Acids Res 38, 98–104.

    Article  Google Scholar 

  9. Pruitt, K. D., Tatusova, T., Klimke, W., et al. (2009) NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 37, 32–36.

    Article  Google Scholar 

  10. Flicek, P., Aken, B. L., Ballester, B., et al. (2010) Ensembl’s 10th year Nucleic Acids Res 38, 557–562.

    Article  Google Scholar 

  11. Thomas-Chollier, M., Sand, O., Turatsinze, J. V., et al (2008) RSAT: regulatory sequence analysis tools. Nucleic Acids Res 36, 119–127.

    Article  Google Scholar 

  12. Matys, V., Kel-Margoulis, O. V., Fricke, E., et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34, 108–110.

    Article  Google Scholar 

  13. Jiang, C., Xuan, Z., Zhao, F., et al. (2007) TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res 35, 137–140.

    Article  Google Scholar 

  14. Kolchanov, N. A., Ignatieva, E. V., Ananko, E. A., et al. (2002) Transcription Regulatory Regions Database (TRRD): its status in 2002. Nucleic Acids Res 30, 312–317.

    Article  PubMed  CAS  Google Scholar 

  15. Ghosh, D. (2000) Object-oriented transcription factors database (ooTFD). Nucleic Acids Res 28, 308–310.

    Article  PubMed  CAS  Google Scholar 

  16. Sun, H., Palaniswamy, S. K., Pohar, T. T., et al. (2006) MPromDb: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-chip experimental data. Nucleic Acids Res 34, 98–103.

    Article  Google Scholar 

  17. McWilliam, H., Valentin, F., Goujon, M., et al. (2009) Web services at the European Bioinformatics Institute—2009. Nucleic Acids Res 37, 6–10.

    Article  Google Scholar 

  18. Sandelin, A., Alkema, W., Engström, P., et al. (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32, 91–94.

    Article  Google Scholar 

  19. Robison, K., McGuire, A. M., Church, G. M. (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 284, 241–254.

    Article  PubMed  CAS  Google Scholar 

  20. Whyatt, D. J., deBoer, E., Grosveld, F. (1993) The two zinc finger-like domains of GATA-1 have different DNA binding specificities. EMBO J 12, 4993–5005.

    PubMed  CAS  Google Scholar 

  21. Shultzaberger, R. K., Schneider, T. D. (1999) Using sequence logos and information analysis of Lrp DNA binding sites to investigate discrepancies between natural selection and SELEX. Nucleic Acids Res 27, 882–887.

    Article  PubMed  CAS  Google Scholar 

  22. Fu, Y., Weng, Z. (2005) Improvement of TRANSFAC matrices using multiple local alignment of transcription factor binding site sequences. Genome Inform 16, 68–72.

    PubMed  CAS  Google Scholar 

  23. Sun, Y. V., Boverhof, D. R., Burgoon, L. D., et al. (2004) Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res 32, 4512–4523.

    Article  PubMed  CAS  Google Scholar 

  24. Defrance, M., van Helden, J. (2009) Info-gibbs: a motif discovery algorithm that directly optimizes information content during sampling. Bioinformatics 25, 2715–2722.

    Article  PubMed  CAS  Google Scholar 

  25. Schoenmakers, E., Alen, P., Verrijdt, G., et al (1999) Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochem J 341, 515–521.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, J. B., Spotts, G. D., Halvorsen, Y. D., et al. (1995) Dual DNA binding specificity of DD1/SREBP1 controlled by a single amino acid in the basic helix–loop–helix domain. Mol Cell Biol 15, 2582–2588.

    PubMed  CAS  Google Scholar 

  27. Khorasanizadeh, S., Rastinejad, F. (2001) Nuclear-receptor interactions on DNA-response elements. Trends Biochem Sci 26, 384–390.

    Article  PubMed  CAS  Google Scholar 

  28. Messeguer, X., Escudero, R., Farré D, et al. (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18, 333–334.

    Article  PubMed  CAS  Google Scholar 

  29. Cornish-Bowden, A. (1985) Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Res 13, 3021–3030.

    Article  PubMed  CAS  Google Scholar 

  30. Oshchepkov, D. Y., Vityaev, E. E., Grigorovich, D. A., et al. (2004) SITECON: a tool for detecting conservative conformational and physicochemical properties in transcription factor binding site alignments and for site recognition. Nucleic Acids Res 32, 208–212.

    Article  Google Scholar 

  31. Zhu, J., Zhang, M. Q. (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15, 607–611.

    Article  PubMed  CAS  Google Scholar 

  32. Berezikov, E., Guryev, V., Cuppen, E. (2007) Exploring conservation of transcription factor binding sites with CONREAL. Methods Mol Biol 395, 437–448.

    Article  PubMed  CAS  Google Scholar 

  33. Zhou, Q., Liu, J. S. (2004) Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics 20, 909–916.

    Article  PubMed  CAS  Google Scholar 

  34. Mikkelsen, T. (1993) Interpreting sequence motifs: a cautionary note. Trends Genet 9, 159.

    Article  PubMed  CAS  Google Scholar 

  35. Levitsky, V. G., Ignatieva, E. V., Ananko, E. A. et al. (2007) Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions. BMC Bioinformatics 8, 481.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Y. Oshchepkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oshchepkov, D.Y., Levitsky, V.G. (2011). In Silico Prediction of Transcriptional Factor-Binding Sites. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics