Skip to main content

DNA Unzipping and Force Measurements with a Dual Optical Trap

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 783))

Abstract

In order to open the DNA double helix mechanically, a molecular construction is prepared which allows specific attachment of the two complementary strands of an individual molecule to two differentμm-sized beads. The beads are separately captured by a dual optical trap, thus holding the DNA construction in solution. The opening of a molecule is obtained by increasing the distance between the traps, one trap being slowly moved while the other is held fixed. Force is measured to sub-piconewton precision by back focal plane interferometry of the bead in the fixed trap. The experiment allows us to measure base sequence-dependent force signal. In this chapter, important technical aspects of this type of single-molecule force measurements are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bustamante C., Bryant Z., Smith S. (2003) Ten years of tension: single molecule DNA mechanics. Nature 421, 423–427.

    Article  PubMed  Google Scholar 

  2. Allemand J. F., Bensimon D., Croquette V. (2003) Stretching DNA and RNA to probe their interactions with proteins. Curr Opin Struct Biol 13, 266–274.

    Article  PubMed  CAS  Google Scholar 

  3. Bockelmann U. (2004) Single-molecule manipulation of nucleic acids. Curr Opin Struct Biol 14, 368–373.

    Article  PubMed  CAS  Google Scholar 

  4. Neuman K. C. and Block S. M. (2004) Optical trapping. Rev. Sci. Instrum. 75, 2787–2809.

    Article  PubMed  CAS  Google Scholar 

  5. Essevaz-Roulet B., Bockelmann U. and Heslot F. (1997) Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci USA 94, 11935–11940.

    Article  PubMed  CAS  Google Scholar 

  6. Bockelmann U., Essevaz-Roulet B. and Heslot F. (1997) Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys Rev Lett 79, 4489–4492.

    Article  CAS  Google Scholar 

  7. Rief M., Clausen-Schaumann H. and Gaub H. E. (1999) Sequence dependent mechanics of single DNA molecules. Nat Struct Biol 6, 346–349.

    Article  PubMed  CAS  Google Scholar 

  8. Bockelmann U., Thomen P., Essevaz-Roulet B., Viasnoff V. and Heslot F. (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82, 1537–1553.

    Article  PubMed  CAS  Google Scholar 

  9. Danilowicz C., Coljee V. W., Bouzigues C., Lubensky D. K., Nelson D.R. and Prentiss M. (2003) DNA unzipped under a constant force exhibits multiple metastable intermediates. Proc Natl Acad Sci USA 100, 1694–1699.

    Article  PubMed  CAS  Google Scholar 

  10. Baldazzi V., Cocco S., Marinari E. and Monasson R. (2006) On the inference of DNA sequences from mechanical unzipping experiments. Phys. Rev. Lett. 96, 128102.

    Article  PubMed  CAS  Google Scholar 

  11. Baldazzi V., Bradde S., Cocco S., Marinari E. and Monasson R. (2007) Inferring DNA sequences from mechanical unzipping data: the large-bandwidth case. Phys. Rev. E 75 , 011904.

    Article  CAS  Google Scholar 

  12. Koch S. J., Shundrovsky A., Jantzen B. C., Wang MD (2002) Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys J 83, 1098–1105.

    Article  PubMed  CAS  Google Scholar 

  13. Koch S. J., Wang M. D. (2003) Dynamic force spectroscopy of protein-DNA interactions by unzipping DNA. Phys Rev Lett 91, 28103.

    Article  Google Scholar 

  14. Bockelmann U., Thomen P. and Heslot F. (2004) Dynamics of the DNA duplex formation studied by single molecule force measurements. Biophys J 87, 3388.

    Article  PubMed  CAS  Google Scholar 

  15. Liphardt J., Onoa B., Smith S.B., Tinoco I. Jr. and Bustamante C. (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737.

    Article  PubMed  CAS  Google Scholar 

  16. Onoa B., Dumont S., Liphardt J., Smith SB, Tinoco I. Jr. and Bustamante C. (2003) Identifying the kinetic barriers to mechanical unfolding of the T. thermophila ribozyme Science 299, 1892–1895.

    Google Scholar 

  17. Mangeol P., Côte D., Bizebard T., Legrand O. and Bockelmann U. (2006) Probing DNA and RNA single molecules with a double optical tweezer. Eur. Phys. J. 19, 311.

    CAS  Google Scholar 

  18. William J, Greenleaf WJ, Frieda KL, Foster DAN, Woodside MT, Block SM. (2008) Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633.

    Article  Google Scholar 

  19. Dumont S., Cheng W., Serebrov V., Beran R. K., Tinoco I. Jr., Pyle A. M. and Bustamante C. (2006) RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng W., Dumont S., Tinoco I. Jr. and Bustamante C. (2007) NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork. Proc. Nat. Acad. Sci. 104, 13954–13959.

    Article  PubMed  CAS  Google Scholar 

  21. William J. Greenleaf W. J., Frieda K. L., Foster D. A. N., Woodside M. T., Block S. M. (2006) Single-molecule, motion-based DNA sequencing using RNA polymerase. Science 313, 801.

    Google Scholar 

  22. Mangeol P. and Bockelmann U. (2008) Interference and crosstalk in double optical tweezers using a single laser source. Rev. Sci. Inst. 79, 083103.

    Article  Google Scholar 

  23. Inoué S. (1952) Studies on depolarization of light at microscope lens surfaces I. The origin of stray light by rotation at the lens surfaces. Exp. Cell Res. 3, 199–208.

    Article  Google Scholar 

  24. Inoué S. and Hyde W. L. (1957) Studies on depolarization of light at microscope lens surfaces II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope. J. Biophys. Biochem. Cytol. 3, 831–838.

    Article  PubMed  Google Scholar 

  25. Peterman E. J. G., Gittes F. and Schmidt, C. F. (2003) Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bockelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cissé, I., Mangeol, P., Bockelmann, U. (2011). DNA Unzipping and Force Measurements with a Dual Optical Trap. In: Peterman, E., Wuite, G. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 783. Humana Press. https://doi.org/10.1007/978-1-61779-282-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-282-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-281-6

  • Online ISBN: 978-1-61779-282-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics