Skip to main content

Exploring Functional In Vivo Consequences of the Selective Genetic Ablation of mTOR Signaling in T Helper Lymphocytes

  • Protocol
  • First Online:
mTOR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 821))

Abstract

The mammalian Target of Rapamycin (mTOR) defines a crucial link between nutrient sensing and immune function. In CD4+ T cells, mTOR has been shown to play a critical role in regulating effector and regulatory T cell differentiation as well as the decision between full activation versus the induction of anergy. In this chapter, we describe how our group has employed the Cre-lox technology to genetically delete components of the mTOR signaling complex in T cells. This has enabled us to specifically interrogate mTOR function in T cells both in vitro and in vivo. We also describe techniques used to assay immune function and signaling in mTOR-deficient T cells at the single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabatini, D. M. (2006) mTOR and cancer: insights into a complex relationship, Nat Rev Cancer 6, 729–734.

    Article  PubMed  CAS  Google Scholar 

  2. Delgoffe, G. M., Kole, T. P., Zheng, Y., Zarek, P. E., Matthews, K. L., Xiao, B., Worley, P. F., Kozma, S. C., and Powell, J. D. (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment, Immunity 30, 832–844.

    Article  PubMed  CAS  Google Scholar 

  3. Araki, K., Turner, A. P., Shaffer, V. O., Gangappa, S., Keller, S. A., Bachmann, M. F., Larsen, C. P., and Ahmed, R. (2009) mTOR regulates memory CD8 T-cell differentiation, Nature 460, 108–112.

    Article  PubMed  CAS  Google Scholar 

  4. Rao, R. R., Li, Q., Odunsi, K., and Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin, Immunity 32, 67–78.

    Google Scholar 

  5. Kopf, H., de la Rosa, G. M., Howard, O. M., and Chen, X. (2007) Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells, Int Immuno-pharmacol 7, 1819–1824.

    Article  PubMed  CAS  Google Scholar 

  6. Valmori, D., Tosello, V., Souleimanian, N. E., Godefroy, E., Scotto, L., Wang, Y., and Ayyoub, M. (2006) Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells, J Immunol 177, 944–949.

    PubMed  CAS  Google Scholar 

  7. Battaglia, M., Stabilini, A., and Roncarolo, M. G. (2005) Rapamycin selectively expands CD4  +  CD25  +  FoxP3+ regulatory T cells, Blood 105, 4743–4748.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, B., Xiao, Z., Chen, B., Han, J., Gao, Y., Zhang, J., Zhao, W., Wang, X., and Dai, J. (2008) Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway, PLoS One 3, e1856.

    Article  PubMed  Google Scholar 

  9. Guertin, D. A., and Sabatini, D. M. (2007) Defining the role of mTOR in cancer, Cancer Cell 12, 9–22.

    Article  PubMed  CAS  Google Scholar 

  10. Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W., and Powell, J. D. (2009) Anergic T cells are metabolically anergic, J Immunol 183, 6095–6101.

    Article  PubMed  CAS  Google Scholar 

  11. Guertin, D. A., and Sabatini, D. M. (2009) The pharmacology of mTOR inhibition, Sci Signal 2, pe24.

    Google Scholar 

  12. Sarbassov, D. D., Ali, S. M., Sengupta, S., Sheen, J. H., Hsu, P. P., Bagley, A. F., Markhard, A. L., and Sabatini, D. M. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB, Mol Cell 22, 159–168.

    Article  PubMed  CAS  Google Scholar 

  13. Delgoffe, G. M., and Powell, J. D. (2009) mTOR: taking cues from the immune microenvironment, Immunology 127, 459–465.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the Powell laboratory for technical assistance in optimizing these models. In addition, we would like to thank Dr. Sara C. Kozma (U. Cincinnati) for generating the original floxed mouse lines. This work was supported by R01AI077610-01A2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Delgoffe, G.M., Powell, J.D. (2012). Exploring Functional In Vivo Consequences of the Selective Genetic Ablation of mTOR Signaling in T Helper Lymphocytes. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics