Skip to main content

Tissue-Specific Ablation of Tsc1 in Pancreatic Beta-Cells

  • Protocol
  • First Online:
mTOR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 821))

Abstract

Tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that associates with TSC2 to inactivate Rheb, thereby inhibiting signaling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as translation, in response to growth factors and nutrient signals. In order to test roles for TSC1 and mTORC1 in β-cell function, we utilized Rip2/Cre to generate mice lacking Tsc1 in pancreatic β cells (Rip-Tsc1cKO mice). While obesity developed due to hypothalamic Tsc1 excision in older Rip-Tsc1cKO animals, young animals displayed a prominent gain-of-function β-cell phenotype prior to the onset of obesity. The young Rip-Tsc1cKO animals displayed improved glycemic control due to mTOR-mediated enhancement of β-cell size and insulin production, but not β-cell number consistent with an important anabolic role for mTOR in β-cell function. Thus, mTOR promulgates a dominant signal to promote β-cell/islet size and insulin production, and this pathway is crucial for β-cell function and glycemic control.

Here, we describe the methods of analyzing tissue-specific ablation of Tsc1 in pancreatic β cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M. N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control, Molecular cell 10, 457–468.

    Article  PubMed  CAS  Google Scholar 

  2. Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J. M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G. I., Bonner-Weir, S., and White, M. F. (1998) Disruption of IRS-2 causes type 2 diabetes in mice, Nature 391, 900–904.

    Article  PubMed  CAS  Google Scholar 

  3. Niswender, K. D., Morton, G. J., Stearns, W. H., Rhodes, C. J., Myers, M. G., Jr., and Schwartz, M. W. (2001) Intracellular signalling. Key enzyme in leptin-induced anorexia, Nature 413, 794–795.

    CAS  Google Scholar 

  4. Araki, E., Lipes, M. A., Patti, M. E., Bruning, J. C., Haag, B., 3rd, Johnson, R. S., and Kahn, C. R. (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene, Nature 372, 186–190.

    Article  PubMed  CAS  Google Scholar 

  5. Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., and et al. (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1, Nature 372, 182–186.

    Article  PubMed  CAS  Google Scholar 

  6. Katz, E. B., Stenbit, A. E., Hatton, K., DePinho, R., and Charron, M. J. (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4, Nature 377, 151–155.

    Article  PubMed  CAS  Google Scholar 

  7. Lin, X., Taguchi, A., Park, S., Kushner, J. A., Li, F., Li, Y., and White, M. F. (2004) Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes, J Clin Invest 114, 908–916.

    PubMed  CAS  Google Scholar 

  8. Kulkarni, R. N., Bruning, J. C., Winnay, J. N., Postic, C., Magnuson, M. A., and Kahn, C. R. (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes, Cell 96, 329–339.

    Article  PubMed  CAS  Google Scholar 

  9. Kubota, N., Terauchi, Y., Tobe, K., Yano, W., Suzuki, R., Ueki, K., Takamoto, I., Satoh, H., Maki, T., Kubota, T., Moroi, M., Okada-Iwabu, M., Ezaki, O., Nagai, R., Ueta, Y., Kadowaki, T., and Noda, T. (2004) Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus, J Clin Invest 114, 917–927.

    PubMed  CAS  Google Scholar 

  10. Hashimoto, N., Kido, Y., Uchida, T., Asahara, S., Shigeyama, Y., Matsuda, T., Takeda, A., Tsuchihashi, D., Nishizawa, A., Ogawa, W., Fujimoto, Y., Okamura, H., Arden, K. C., Herrera, P. L., Noda, T., and Kasuga, M. (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass, Nature genetics 38, 589–593.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, H., Remedi, M. S., Pappan, K. L., Kwon, G., Rohatgi, N., Marshall, C. A., and McDaniel, M. L. (2009) Glycogen synthase kinase-3 and mammalian target of rapamycin pathways contribute to DNA synthesis, cell cycle progression, and proliferation in human islets, Diabetes 58, 663–672.

    Article  PubMed  CAS  Google Scholar 

  12. Kwon, G., Marshall, C. A., Liu, H., Pappan, K. L., Remedi, M. S., and McDaniel, M. L. (2006) Glucose-stimulated DNA synthesis through mammalian target of rapamycin (mTOR) is regulated by KATP channels: effects on cell cycle progression in rodent islets, The Journal of biological chemistry 281, 3261–3267.

    Article  PubMed  CAS  Google Scholar 

  13. Shigeyama, Y., Kobayashi, T., Kido, Y., Hashimoto, N., Asahara, S., Matsuda, T., Takeda, A., Inoue, T., Shibutani, Y., Koyanagi, M., Uchida, T., Inoue, M., Hino, O., Kasuga, M., and Noda, T. (2008) Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice, Molecular and cellular biology 28, 2971–2979.

    Article  PubMed  CAS  Google Scholar 

  14. Hamada, S., Hara, K., Hamada, T., Yasuda, H., Moriyama, H., Nakayama, R., Nagata, M., and Yokono, K. (2009) Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia, Diabetes 58, 1321–1332.

    Article  PubMed  CAS  Google Scholar 

  15. Murakami, M., Ichisaka, T., Maeda, M., Oshiro, N., Hara, K., Edenhofer, F., Kiyama, H., Yonezawa, K., and Yamanaka, S. (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells, Molecular and cellular biology 24, 6710–6718.

    Article  PubMed  CAS  Google Scholar 

  16. Kobayashi, T., Minowa, O., Sugitani, Y., Takai, S., Mitani, H., Kobayashi, E., Noda, T., and Hino, O. (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice, Proceedings of the National Academy of Sciences of the United States of America 98, 8762–8767.

    Article  PubMed  CAS  Google Scholar 

  17. Kwiatkowski, D. J., Zhang, H., Bandura, J. L., Heiberger, K. M., Glogauer, M., el-Hashemite, N., and Onda, H. (2002) A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells, Human molecular genetics 11, 525–534.

    Article  PubMed  CAS  Google Scholar 

  18. Mori, H., Inoki, K., Opland, D., Muenzberg, H., Villanueva, E. C., Faouzi, M., Ikenoue, T., Kwiatkowski, D., Macdougald, O. A., Myers Jr, M. G., and Guan, K. L. (2009) Critical roles for the TSC-mTOR pathway in {beta}-cell function, American journal of physiology Endocrinol Metab 297 , E1013–E1022.

    Google Scholar 

  19. Mori, H., Inoki, K., Munzberg, H., Opland, D., Faouzi, M., Villanueva, E. C., Ikenoue, T., Kwiatkowski, D., MacDougald, O. A., Myers, M. G., Jr., and Guan, K. L. (2009) Critical role for hypothalamic mTOR activity in energy balance, Cell metabolism 9, 362–374.

    Google Scholar 

  20. Uhlmann, E. J., Wong, M., Baldwin, R. L., Bajenaru, M. L., Onda, H., Kwiatkowski, D. J., Yamada, K., and Gutmann, D. H. (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures, Annals of neurology 52, 285–296.

    Article  PubMed  CAS  Google Scholar 

  21. Meikle, L., McMullen, J. R., Sherwood, M. C., Lader, A. S., Walker, V., Chan, J. A., and Kwiatkowski, D. J. (2005) A mouse model of cardiac rhabdomyoma generated by loss of Tsc1 in ventricular myocytes, Human molecular genetics 14, 429–435.

    Article  PubMed  CAS  Google Scholar 

  22. Choudhury, A. I., Heffron, H., Smith, M. A., Al-Qassab, H., Xu, A. W., Selman, C., Simmgen, M., Clements, M., Claret, M., Maccoll, G., Bedford, D. C., Hisadome, K., Diakonov, I., Moosajee, V., Bell, J. D., Speakman, J. R., Batterham, R. L., Barsh, G. S., Ashford, M. L., and Withers, D. J. (2005) The role of insulin receptor substrate 2 in hypothalamic and beta cell function, J Clin Invest 115, 940–950.

    PubMed  CAS  Google Scholar 

  23. Stiles, B. L., Kuralwalla-Martinez, C., Guo, W., Gregorian, C., Wang, Y., Tian, J., Magnuson, M. A., and Wu, H. (2006) Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes, Molecular and cellular biology 26, 2772–2781.

    Article  PubMed  CAS  Google Scholar 

  24. Nguyen, K. T., Tajmir, P., Lin, C. H., Liadis, N., Zhu, X. D., Eweida, M., Tolasa-Karaman, G., Cai, F., Wang, R., Kitamura, T., Belsham, D. D., Wheeler, M. B., Suzuki, A., Mak, T. W., and Woo, M. (2006) Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo, Molecular and cellular biology 26, 4511–4518.

    Article  PubMed  CAS  Google Scholar 

  25. Lacy, P. E., and Kostianovsky, M. (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas, Diabetes 16, 35–39.

    PubMed  CAS  Google Scholar 

  26. Shapiro, A. M., Lakey, J. R., Ryan, E. A., Korbutt, G. S., Toth, E., Warnock, G. L., Kneteman, N. M., and Rajotte, R. V. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, The New England journal of medicine 343, 230–238.

    Article  PubMed  CAS  Google Scholar 

  27. Wendel, H. G., De Stanchina, E., Fridman, J. S., Malina, A., Ray, S., Kogan, S., Cordon-Cardo, C., Pelletier, J., and Lowe, S. W. (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy, Nature 428, 332–337.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIH and DOD (K.L.G), and H.M was supported by a mentor-based postdoctoral fellowship from ADA.

We thank Marta Dzaman, Chris Edwards, Naoko Wanibuchi, and Michael A Reid for technical advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mori, H., Guan, KL. (2012). Tissue-Specific Ablation of Tsc1 in Pancreatic Beta-Cells. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics