Skip to main content

Genetic Engineering of Industrial Strains of Saccharomyces cerevisiae

  • Protocol
  • First Online:
Recombinant Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 824))

Abstract

Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker, G.M. (1998) Yeast technology. In: Yeast physiology and biotechnology. p. 265–320. John Wiley and Sons Ltd, Chichester, England.

    Google Scholar 

  2. Bai, F.W., Anderson, W.A. and Moo-Young, M. (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv. 26(1):89–105.

    Article  PubMed  CAS  Google Scholar 

  3. Branduardi, P., Smeraldi, C. and Porro, D. (2008) Metabolically engineered yeasts: “Potential” industrial applications. J Mol Microbiol Biotechnol. 15(1):31–40.

    Article  PubMed  CAS  Google Scholar 

  4. Werpy, T. and Petersen, G. (2004) Top Value added chemicals from biomass. Vol. 1 Results of screening for potential candidates from sugars and synthesis gas.

    Google Scholar 

  5. BREW (2006) Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources – final report. Prepared under the European Commissions GROWTH program, Utrecht.

    Google Scholar 

  6. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G. and Zacchi, G. (2006) Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12): 549–556.

    Article  PubMed  Google Scholar 

  7. Gibson, B.R., Lawrence, S.J., Leclaire, J.P., Powell, C.D. and Smart, K.A. (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev. 31(5): 535–569.

    Article  PubMed  CAS  Google Scholar 

  8. Klinke, H.B., Thomsen, A.B. and Ahring, B.K. (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 66(1):10–26.

    Article  PubMed  CAS  Google Scholar 

  9. Querol, A., Fernández-Espinar, M.T., del Olmo, M. and Barrio, E. (2003) Adaptative evolution of yeast. Int J Food Microbiol. 86: 3–10.

    Article  PubMed  CAS  Google Scholar 

  10. Gibson, B.R., Lawrence, S.J., Leclaire, J.P., Powell, C.D. and Smart, K.A. (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev. 31(5): 535–569.

    Article  PubMed  CAS  Google Scholar 

  11. Silva-Filho, E.A., dos Santos, S.K.B., Resende, A.M., de Moraes, J.O.F., Morais Jr, M.A. and Simoes, D.A. (2005) Yeast population dynamics of industrial fuel ethanol fermentation process assessed by PCR-fingerprinting. Antonie van Leeuwenkoek 88:13–23.

    Google Scholar 

  12. Basso, L.C., de Amorim, H.V., de Oliveira, A.J. and Lopes, M.L. (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 8(7):1155–1163.

    Article  PubMed  CAS  Google Scholar 

  13. Cocolin, L., Pepe, V., Comitini, F., Comi, G. and Ciani, M. (2004) Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Res. 5(3):237–245.

    Article  PubMed  CAS  Google Scholar 

  14. Li, B.Z., Cheng, J.S., Qiao, B. and Yuan, Y.J. (2010) Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol. 37(1):43–55.

    Article  PubMed  Google Scholar 

  15. Querol, A. and Bond, U. (2009) The complex and dynamic genomes of industrial yeasts. FEMS Microbiol Lett. 293(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  16. Codón, A.C., Benítez, T. and Korhola, M. (1998) Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biotechnol. 49(2):154–163.

    Article  PubMed  Google Scholar 

  17. Infante, J.J., Dombek, K.M., Rebordinos, L., Cantoral, J.M. and Young, E.T. (2003) Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics 165(4):1745–59.

    PubMed  CAS  Google Scholar 

  18. Lucena, B.T., Silva-Filho, E.A., Coimbra, M.R., Morais, J.O., Simões, D.A. and Morais, M.A. Jr. (2007) Chromosome instability in industrial strains of Saccharomyces cerevisiae batch cultivated under laboratory conditions. Genet Mol Res. 6(4):1072–1084.

    PubMed  CAS  Google Scholar 

  19. Stambuk, B.U., Dunn, B., Alves, S.L. Jr, Duval, E.H., Sherlock, G. (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res. 19(12):2271–2278.

    Article  PubMed  CAS  Google Scholar 

  20. Argueso, J.L., Carazzolle, M.F., Mieczkowski, P.A., Duarte, F.M., Netto, O.V., Missawa, S.K., Galzerani, F., Costa, G.G., Vidal, R.O., Noronha, M.F., Dominska, M., Andrietta, M.G., Andrietta, S.R., Cunha, A.F., Gomes, L.H., Tavares, F.C., Alcarde, A.R., Dietrich, F.S., McCusker, J.H., Petes, T.D. and Pereira, G.A. (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res. 19(12):2258–2270.

    Article  PubMed  CAS  Google Scholar 

  21. Bro, C., Regenberg, B. and Nielsen, J. (2003) Yeast functional genomics and metabolic engineering: past, present and future. Topics in Current Genetics, Vol. 2, J.H. de Winde (Ed): Functional genetics of Industrial Yeasts. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  22. Spencer, J.F. and Spencer, D.M. (1983) Genetic improvement of industrial yeasts. Annu Rev Microbiol. 37:121–142.

    Article  PubMed  CAS  Google Scholar 

  23. Fujii, T., Kondo, K., Shimizu, F., Sone, H., Tanaka, J. and Inoue, T. (1990) Application of a ribosomal DNA integration vector in the construction of a brewer’s yeast having ­alpha-acetolactate decarboxylase activity. Appl Environ Microbiol. 56(4):997–1003.

    PubMed  CAS  Google Scholar 

  24. Mumberg, D., Müller, R. and Funk, M. (1995) Yeasts vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122.

    Article  PubMed  CAS  Google Scholar 

  25. Hashimoto, S., Ogura, M., Aritomi, K., Hoshida, H., Nishizawa, Y. and Akada, R. (2005) Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol. 71(1):312–319.

    Article  PubMed  CAS  Google Scholar 

  26. Carter, Z. and Delneri, D. (2010) New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 27(9):765–775.

    Google Scholar 

  27. Ostergaard, S., Olsson, L. and Nielsen, J. (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 64(1): 34–50.

    Article  PubMed  CAS  Google Scholar 

  28. Nevoigt, E. (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 72(3):379–412.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, J. (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol. 56:1–24.

    Article  PubMed  CAS  Google Scholar 

  30. Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. and Gorwa-Grauslund, M.F. (2007) Towards industrial pentose-­fermenting yeast strains. Appl Microbiol Biotechnol. 74(5):937–953.

    Article  PubMed  Google Scholar 

  31. Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K. and Sawayama, S. (2009a) Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol. 75(11):3818–3822.

    Article  PubMed  CAS  Google Scholar 

  32. Matsushika, A., Inoue, H., Murakami, K., Takimura, O. and Sawayama, S. (2009b) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol. 100(8):2392–2398.

    Article  PubMed  CAS  Google Scholar 

  33. Karhumaa, K., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22(5):359–368.

    Article  PubMed  CAS  Google Scholar 

  34. Bengtsson, O., Jeppsson, M., Sonderegger, M., Parachin, N.S., Sauer, U., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2008) Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25(11):835–847.

    Article  PubMed  CAS  Google Scholar 

  35. Parachin, N.S., Bengtsson, O., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2010) The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Yeast 27(9):741–751.

    Google Scholar 

  36. Bera, A.K., Sedlak, M., Khan, A. and Ho, N.W. (2010) Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol. 87(5):1803–1811.

    Article  PubMed  CAS  Google Scholar 

  37. Karhumaa, K., Wiedemann, B., Hahn-Hägerdal, B., Boles, E. and Gorwa-Grauslund, M.F. (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact. 5:18.

    Article  PubMed  Google Scholar 

  38. Karhumaa, K., Garcia Sanchez, R., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact. 6:5.

    Article  PubMed  Google Scholar 

  39. GGarcia Sanchez, R., Karhumaa, K., Fonseca, C., Sánchez Nogué, V., João RM Almeida, J.R.M., Larsson, C.U., Bengtsson, O., Bettiga, M., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13.

    Google Scholar 

  40. Brat, D., Boles, E. and Wiedemann, B. (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75(8): 2304–2311.

    Article  PubMed  CAS  Google Scholar 

  41. Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S., de Laat, W.T., den Ridder, J.J., Op den Camp, H.J., van Dijken, J.P. and Pronk, J.T. (2003) High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4(1):69–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Le Borgne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Le Borgne, S. (2012). Genetic Engineering of Industrial Strains of Saccharomyces cerevisiae . In: Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 824. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-433-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-433-9_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-432-2

  • Online ISBN: 978-1-61779-433-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics