Skip to main content

Best Practices in Free Energy Calculations for Drug Design

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Free energy calculations are increasingly of interest for computing biophysical properties of novel small molecules of interest in drug design, such as protein–ligand binding affinities and small molecule partition coefficients. However, these calculations are also notoriously difficult to implement correctly. In this article, we review standard methods for computing free energy differences via simulation, discuss current best practices, and examine potential pitfalls for computational researchers without extensive experience in such calculations. We include a variety of examples and tips for how to set up and conduct these calculations, including applications to relative binding affinities and absolute binding free energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mobley, D. L., Graves, A. P., Chodera, J. D., McReynolds, A. C., Shoichet, B. K., and Dill, K. A. (2007) Predicting absolute ligand binding free energies to a simple model site. J. Mol. Biol. 371, 1118–1134.

    Article  PubMed  CAS  Google Scholar 

  2. Woods, C. J., Manby, F. R., and Mulholland, A. J. (2008) An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. J. Chem. Phys. 128, 014109.

    Article  PubMed  Google Scholar 

  3. Zwanzig, R. W. (1954) High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J. Chem. Phys. 22, 1420–1426.

    Article  CAS  Google Scholar 

  4. Shirts, M. R., and Pande, V. S. (2005) Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J. Chem. Phys. 122, 144107.

    Article  PubMed  Google Scholar 

  5. Lu, N. D., Singh, J. K., and Kofke, D. A. (2003) Appropriate methods to combine forward and reverse free-energy perturbation averages. J. Chem. Phys. 118, 2977–2984.

    Article  CAS  Google Scholar 

  6. Resat, H., and Mezei, M. (1993) Studies on free energy calculations. I. Thermodynamic integration using a polynomial path. J. Chem. Phys. 99, 6052–6061.

    Article  CAS  Google Scholar 

  7. Jorge, M., Garrido, N., Queimada, A., Economou, I., and Macedo, E. (2010) Effect of the Integration Method on the Accuracy and Computational Efficiency of Free Energy Calculations Using Thermodynamic Integration. J. Chem. Theo. Comp. 6, 1018–1027.

    Article  CAS  Google Scholar 

  8. Shyu, C., and Ytreberg, F. M. (2009) Reducing the bias and uncertainty of free energy estimates by using regression to fit thermodynamic integration data. Journal of Computational Chemistry 30, 2297–2304.

    PubMed  CAS  Google Scholar 

  9. Bennett, C. H. (1976) Efficient Estimation of Free Energy Differences from Monte Carlo Data. J. Comput. Phys. 22, 245–268.

    Article  Google Scholar 

  10. Shirts, M. R., Bair, E., Hooker, G., and Pande, V. S. (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys. Rev. Lett 91, 140601.

    Article  PubMed  Google Scholar 

  11. Ytreberg, F. M., Swendsen, R. H., and Zuckerman, D. M. (2006) Comparison of free energy methods for molecular systems. J. Chem. Phys. 125, 184114.

    Article  PubMed  Google Scholar 

  12. Rick, S. W. (2006) Increasing the efficiency of free energy calculations using parallel tempering and histogram reweighting. J. Chem. Theory Comput. 2, 939–946.

    Article  CAS  Google Scholar 

  13. Ferrenberg, A. M., and Swendsen, R. H. (1989) Optimized Monte Carlo Data Analysis. Phys. Rev. Lett 63, 1195–1198.

    Article  PubMed  CAS  Google Scholar 

  14. Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A., and Rosenberg, J. M. (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021.

    Article  CAS  Google Scholar 

  15. Bartels, C., and Karplus, M. (1997) Multidimensional adaptive umbrella sampling: Applications to main chain and side chain peptide conformations. J. Comput. Chem. 18, 1450–1462.

    Article  CAS  Google Scholar 

  16. Gallicchio, E., Andrec, M., Felts, A. K., and Levy, R. M. (2005) Temperature weighted histogram analysis method, replica exchange, and transition paths. J. Phys. Chem. B 109, 6722–6731.

    Article  PubMed  CAS  Google Scholar 

  17. Souaille, M., and Roux, B. (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 135, 40–57.

    Article  CAS  Google Scholar 

  18. Wang, J., Deng, Y., and Roux, B. (2006) Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with Restraining Potentials. Biophys. J. 91, 2798–2814.

    Article  PubMed  CAS  Google Scholar 

  19. Shirts, M. R., and Chodera, J. D. (2008) Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129, 129105.

    Google Scholar 

  20. Crooks, G. E. (2000) Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366.

    Article  CAS  Google Scholar 

  21. Oostenbrink, C., and van Gunsteren, W. F. (2006) Calculating zeros: Non-equilibrium free energy calculations. Chem. Phys. 323, 102–108.

    Article  CAS  Google Scholar 

  22. Oberhofer, H., Dellago, C., and Geissler, P. L. (2005) Biased Sampling of Nonequilibrium Trajectories: Can Fast Switching Simulations Outperform Conventional Free Energy Calculation Methods? J. Phys. Chem. B 109, 6902–6915.

    Article  PubMed  CAS  Google Scholar 

  23. Pohorille, A., Jarzynski, C., and Chipot, C. (2010) Good Practices in Free-Energy Calculations. J. Phys. Chem. B 114, 10235–10253.

    Article  PubMed  CAS  Google Scholar 

  24. Beutler, T. C., Mark, A. E., van Schaik, R. C., Gerber, P. R., and van Gunsteren, W. F. (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem. Phys. Lett. 222, 529–539.

    Article  CAS  Google Scholar 

  25. Zacharias, M., Straatsma, T. P., and McCammon, J. A. (1994) Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J. Phys. Chem. 100, 9025–9031.

    Article  CAS  Google Scholar 

  26. Shirts, M. R., and Pande, V. S. (2005) Solvation free energies of amino acid side chains for common molecular mechanics water models. J. Chem. Phys. 122, 134508.

    Article  PubMed  Google Scholar 

  27. Steinbrecher, T., Mobley, D. L., and Case, D. A. (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J. Chem. Phys. 127, 214108.

    Article  PubMed  Google Scholar 

  28. Pitera, J. W., and van Gunsteren, W. F. (2002) A comparison of non-bonded scaling approaches for free energy calculations. Mol. Simulat. 28, 45–65.

    Article  CAS  Google Scholar 

  29. Blondel, A. (2004) Ensemble variance in free energy calculations by thermodynamic integration: theory, optimal Alchemical path, and practical solutions. J. Comput. Chem. 25, 985–993.

    Article  PubMed  CAS  Google Scholar 

  30. Boresch, S., and Karplus, M. (1999) The Role of Bonded Terms in Free Energy Simulations. 2. Calculation of Their Influence on Free Energy Differences of Solvation. J. Phys. Chem. A 103, 119–136.

    Article  CAS  Google Scholar 

  31. Boresch, S., Tettinger, F., Leitgeb, M., and Karplus, M. (2003) Absolute binding free energies: A quantitative approach for their calculation. J. Phys. Chem. A 107, 9535–9551.

    CAS  Google Scholar 

  32. Ytreberg, F. (2009) Absolute FKBP binding affinities obtained via nonequilibrium unbinding simulations. J. Chem. Phys. 130, 164906.

    Article  PubMed  Google Scholar 

  33. Lee, M. S., and Olson, M. A. (2006) Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches. Biophys. J. 90, 864–877.

    Article  PubMed  CAS  Google Scholar 

  34. Woo, H.-J., and Roux, B. (2005) Calculation of absolute protein-ligand binding free energy from computer simulation. Proc. Natl. Acad. Sci. 102, 6825–6830.

    Article  PubMed  CAS  Google Scholar 

  35. Gan, W., and Roux, B. (2008) Binding specificity of SH2 domains: Insight from free energy simulations. Proteins 74, 996–1007.

    Article  Google Scholar 

  36. Boresch, S., and Karplus, M. (1996) The Jacobian factor in free energy simulations. J. Chem. Phys. 105, 5145–5154.

    Article  CAS  Google Scholar 

  37. Shenfeld, D. K., Xu, H., Eastwood, M. P., Dror, R. O., and Shaw, D. E. (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys. Rev. E 80, 046705.

    Article  Google Scholar 

  38. Shirts, M. R., Pitera, J. W., Swope, W. C., and Pande, V. S. (2003) Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. J. Chem. Phys. 119, 5740–5761.

    Article  CAS  Google Scholar 

  39. Kastenholz, M. A., and Hünenberger, P. H. (2006) Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. J. Chem. Phys. 124, 224501.

    Article  PubMed  Google Scholar 

  40. Fujitani, H., Tanida, Y., Ito, M., Shirts, M. R., Jayachandran, G., Snow, C. D., Sorin, E. J., and Pande, V. S. (2005) Direct calculation of the binding free energies of FKBP ligands. J. Chem. Phys. 123, 084108.

    Article  PubMed  Google Scholar 

  41. Smith, L. J., Daura, X., and van Gunsteren, W. F. (2002) Assessing equilibration and convergence in biomolecular simulations. Proteins: Struct., Funct., Bioinf. 48, 487–496.

    Article  CAS  Google Scholar 

  42. Klimovich, P. V., and Mobley, D. L. (2010) Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. J. Comp. Aided Mol. Design 24, 307–316.

    Article  CAS  Google Scholar 

  43. Efron, B., and Tibshirani, R. J. An Introduction to the Bootstrap; Chapman and Hall/CRC: Boca Raton, FL, 1993.

    Google Scholar 

  44. Torrie, G. M., and Valleau, J. P. (1977) Non-physical Sampling Distributions in Monte-Carlo Free-Energy Estimation : Umbrella Sampling. J. Comput. Phys. 23, 187–199.

    Article  Google Scholar 

  45. Mobley, D. L., Chodera, J. D., and Dill, K. A. (2007) Confine-and-release method: Obtaining correct binding free energies in the presence of protein conformational change. J. Chem. Theory Comput. 3, 1231–1235.

    Article  PubMed  CAS  Google Scholar 

  46. Okamoto, Y. (2004) Generalized-ensemble algorithms: Enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J. Mol. Graph. Model. 22, 425–439.

    Article  PubMed  CAS  Google Scholar 

  47. Roux, B., and Faraldo-Gómez, J. D. (2007) Characterization of conformational equilibria through Hamiltonian and temperature replica-exchange simulations: Assessing entropic and environmental effects. J. Comput. Chem. 28, 1634–1647.

    Article  PubMed  Google Scholar 

  48. Woods, C. J., Essex, J. W., and King, M. A. (2003) Enhanced Configurational Sampling in Binding Free Energy Calculations. J. Phys. Chem. B 107, 13711–13718.

    Article  CAS  Google Scholar 

  49. Banba, S., Guo, Z., and Brooks III, C.L. (2000) Efficient sampling of ligand orientations and conformations in free energy calculations using the lambda-dynamics method. J. Phys. Chem. B 104, 6903–6910.

    Article  CAS  Google Scholar 

  50. Bitetti-Putzer, R., Yang, W., and Karplus, M. (2003) Generalized ensembles serve to improve the convergence of free energy simulations. Chem. Phys. Lett. 377, 633–641.

    Article  CAS  Google Scholar 

  51. Hritz, J., and Oostenbrink, C. (2008) Hamiltonian replica exchange molecular dynamics using soft-core interactions. J. Chem. Phys. 128, 144121.

    Article  PubMed  Google Scholar 

  52. Guo, Z., Brooks III, C.L., and Kong, X. (1998) Efficient and flexible algorithm for free energy calculations using the λ-dynamics approach. J. Phys. Chem. B 102, 2032–2036.

    Article  CAS  Google Scholar 

  53. Kong, X., and Brooks III, C. L. (1996) λ-dynamics: A new approach to free energy calculations. J. Chem. Phys. 105, 2414–2423.

    Article  Google Scholar 

  54. Li, H., Fajer, M., and Yang, W. (2007) Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: A general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations. J. Chem. Phys. 126, 024106.

    Article  PubMed  Google Scholar 

  55. Zheng, L., Carbone, I. O., Lugovskoy, A., Berg, B. A., and Yang, W. (2008) A hybrid recursion method to robustly ensure convergence efficiencies in the simulated scaling based free energy simulations. J. Chem. Phys. 129, 034105.

    Article  PubMed  Google Scholar 

  56. Zheng, L., and Yang, W. (2008) Essential energy space random walks to accelerate molecular dynamics simulations: Convergence improvements via an adaptive-length self-healing strategy. J. Chem. Phys. 129, 014105.

    Article  PubMed  Google Scholar 

  57. Min, D., and Yang, W. (2008) Energy difference space random walk to achieve fast free energy calculations. J. Chem. Phys. 128, 191102.

    Article  PubMed  Google Scholar 

  58. Li, H., and Yang, W. (2007) Forging the missing link in free energy estimations: lambda-WHAM in thermodynamic integration, overlap histogramming, and free energy perturbation. Chem. Phys. Lett. 440, 155–159.

    Article  CAS  Google Scholar 

  59. Min, D., Li, H., Li, G., Bitetti-Putzer, R., and Yang, W. (2007) Synergistic approach to improve “alchemical” free energy calculation in rugged energy surface. J. Chem. Phys. 126, 144109.

    Article  PubMed  Google Scholar 

  60. Mobley, D. L., Dumont, È., Chodera, J. D., and Dill, K. A. (2007) Comparison of charge models for fixed-charge force fields: Small-moleculehydration free energies in explicit solvent. J. Phys. Chem. B 111, 2242–2254.

    Article  PubMed  CAS  Google Scholar 

  61. Boyce, S. E., Mobley, D. L., Rocklin, G. J., Graves, A. P., Dill, K. A., and Shoichet, B. K. (2009) Predicting Ligand Binding Affinity with Alchemical Free Energy Methods in a Polar Model Binding Site. J. Mol. Biol. 394, 747–763.

    Article  PubMed  CAS  Google Scholar 

  62. Lawrenz, M., Baron, R., and McCammon, J. A. (2009) Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theo. Comput. 5, 1106–1116.

    Article  CAS  Google Scholar 

  63. Mobley, D. L., Chodera, J. D., and Dill, K. A. (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J. Chem. Phys. 125, 084902.

    Article  PubMed  Google Scholar 

  64. Shirts, M. R., Mobley, D. L., and Chodera, J. D. (2007) Alchemical Free Energy Calculations: Ready for Prime Time? Annu. Rep. Comput. Chem. 3, 41–59.

    Article  CAS  Google Scholar 

  65. Huang, N., and Jacobson, M. P. (2007) Physics-based methods for studying protein-ligand interactions. Curr. Opin. Drug Di. De. 10, 325–31.

    CAS  Google Scholar 

  66. Gilson, M. K., and Zhou, H.-X. (2007) Calculation of Protein-Ligand Binding Affinities. Annu. Rev. Bioph. Biom. 36, 21–42.

    Article  CAS  Google Scholar 

  67. Meirovitch, H. (2007) Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Curr. Opin. Struc. Bio. 17, 181–186.

    Article  CAS  Google Scholar 

  68. Rodinger, T., and Pomès, R. (2005) Enhancing the accuracy, the efficiency and the scope of free energy simulations. Curr. Opin. Struc. Bio. 15, 164–170.

    Article  CAS  Google Scholar 

  69. Jorgensen, W. L. (2004) The many roles of computation in drug discovery. Science 303, 1813–1818.

    Article  PubMed  CAS  Google Scholar 

  70. Chipot, C., and Pearlman, D. A. (2002) Free energy calculations. The long and winding gilded road. Mol. Simulat. 28, 1–12.

    Article  CAS  Google Scholar 

  71. Brandsdal, B. O., Österberg, F., Almlöf, M., Feierberg, I., Luzhkov, V. B., and Åqvist, J. (2003) Free Energy Calculations and Ligand Binding. Adv. Prot. Chem. 66, 123–158.

    Article  CAS  Google Scholar 

  72. Steinbrecher, T., and Labahn, A. (2010) Towards Accurate Free Energy Calculations in Ligand Protein-Binding Studies. Curr. Med. Chem. 17, 767–785.

    Article  PubMed  CAS  Google Scholar 

  73. Michel, J., and Essex, J. W. (2010) Prediction of protein–ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J. Comput. Aided. Mol. Des. 24, 639–658.

    Article  PubMed  CAS  Google Scholar 

  74. Christ, C. D., Mark, A. E., and van Gunsteren, W. F. (2010) Basic Ingredients of Free Energy Calculations: A Review. J. Comp. Chem. 31, 1569–1582.

    CAS  Google Scholar 

  75. Chipot, C., and Pohorille, A., Eds. Free Energy Calculations: Theory and Applications in Chemistry and Biology; Springer, 2007; Vol. 86.

    Google Scholar 

  76. Frenkel, D., and Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Academic Press: San Digeo, CA, 2002.

    Google Scholar 

  77. Reddy, M. R., and Erion, M. D., Eds. Free Energy Calculations in Rational Drug Design; Kluwer Academic, 2001.

    Google Scholar 

  78. Leach, A. R. Molecular Modelling: Principles and Applications; Addison Wesley Longman Limited: Harlow, Essex, England, 1996.

    Google Scholar 

  79. Pearlman, D. A., and Connelly, P. R. (1995) Determination of the differential effects of hydrogen bonding and water release on the binding of FK506 to native and TYR82 → PHE82 FKBP-12 proteins using free energy simulations. J. Mol. Biol. 248, 696–717.

    Article  PubMed  CAS  Google Scholar 

  80. Wang, L., and Hermans, J. (1994) Change of bond length in free-energy simulations: Algorithmic improvements, but when is it necessary? J. Chem. Phys. 100, 9129–9139.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank John Chodera (UC-Berkeley) and David Mobley (University of New Orleans) for ongoing discussions of reliability and usability for free energy calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Shirts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shirts, M.R. (2012). Best Practices in Free Energy Calculations for Drug Design. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics