Skip to main content

Independent-Trajectory Thermodynamic Integration: A Practical Guide to Protein-Drug Binding Free Energy Calculations Using Distributed Computing

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from multiple, independent simulations to obtain more reliable free energy estimates compared to single TI predictions. The latter may significantly under- or over-estimate the binding free energy due to finite sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein–ligand binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are remarkably centered on the target experimental values. Alternative protocols for the practical and general application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive power and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkwood, J. G. (1935) Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300–313.

    Article  CAS  Google Scholar 

  2. Tembe, B., and McCammon, J. (1984) Ligand Receptor Interactions. J. Comput. Chem. 8, 281–283.

    Article  CAS  Google Scholar 

  3. Beveridge, D., and DiCapua, F. (1989) Free Energy Via Molecular Simulation: Application to Chemical and Biomolecular Systems. Annu. Rev. Biophys. Chem. 18, 431–492.

    Article  CAS  Google Scholar 

  4. Kollman, P. (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 2395–2417.

    Google Scholar 

  5. van Gunsteren, W. F., Beutler, T. C., Fraternali, F., King, P. M., Mark, A. E., and Smith, P. E. Computation of Free Energy in Practice: Choice of Approximations and Accuracy Limiting Factors; ESCOM Science Publishers: Leiden, 1993; Vol. 2.

    Google Scholar 

  6. Gilson, M. K., Given, J. A., Bush, B. L., and McCammon, J. A. (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 72, 1047–1069.

    Article  PubMed  CAS  Google Scholar 

  7. Jorgensen, W. (2004) The many roles of computation in drug discovery. Science 303, 1813–1818.

    Article  PubMed  CAS  Google Scholar 

  8. Gilson, M. K., and Zhou, H.-X. (2007) Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36, 21–42.

    Article  PubMed  CAS  Google Scholar 

  9. Pohorille, A., Jarzynski, C., and Chipot, C. (2010) Good Practices in Free-Energy Calculations. J. Phys. Chem. 10235–10253.

    Google Scholar 

  10. Christ, C. D., Mark, A. E., and Gunsteren, W. F. V. (2010) Basic ingredients of free energy calculations: a review. J. Comput. Chem. 31, 1569–1582.

    PubMed  CAS  Google Scholar 

  11. Fujitani, H., Tanida, Y., Ito, M., Jayachandran, G., Snow, C. D., Shirts, M. R., Sorin, E. J., and Pande, V. S. (2005) Direct calculation of the binding free energies of FKBP ligands. J. Chem. Phys. 123, 084108.

    Article  PubMed  Google Scholar 

  12. Zagrovic, B., and van Gunsteren, W. (2007) Computational Analysis of the Mechanism and Thermodynamics of Inhibition of Phosphodiesterase 5A by Synthetic Ligands. J. Chem. Theory Comput. 3, 301–311.

    Article  CAS  Google Scholar 

  13. Lawrenz, M., Baron, R., and McCammon, J. (2009) Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir. J. Chem. Theory Comput. 5, 1106–1116.

    Article  PubMed  CAS  Google Scholar 

  14. Lawrenz, M., Baron, R., Wang, Y., and McCammon, J. (2011) Effects of Biomolecular Flexibility on Alchemical Calculations of Absolute Binding Free Energies. J. Chem. Theory Comput. 7, 2224–2232.

    Google Scholar 

  15. Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., and Skehel, J. J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49.

    Article  PubMed  CAS  Google Scholar 

  16. Amaro, R. E., Minh, D. D. L., Cheng, L. S., Lindstrom, W. M., Olson, A. J., Lin, J.-H., Li, W. W., and McCammon, J. A. (2007) Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J. Am. Chem. Soc. 129, 7764–7765.

    Article  PubMed  CAS  Google Scholar 

  17. Sivendran, S., Jones, V., Sun, D., Wang, Y., Grzegorzewicz, A. E., Scherman, M. S., Napper, A. D., McCammon, J. A., Lee, R. E., Diamond, S. L., and McNeil, M. (2010) Identification of triazinoindol-benzimidazolones as nanomolar inhibitors of the Mycobacterium tuberculosis enzyme TDP-6-deoxy-d-xylo-4-hexopyranosid-4-ulose 3,5-epimerase (RmlC). Bioorg. Med. Chem. 18, 896–908.

    Article  PubMed  CAS  Google Scholar 

  18. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725.

    Article  PubMed  CAS  Google Scholar 

  19. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935.

    Article  CAS  Google Scholar 

  20. Åqvist, J. (1990) Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem. 94, 8021–8024.

    Article  Google Scholar 

  21. Lawrenz, M., Wereszczynski, J., Amaro, R., Walker, R., Roitberg, A., and McCammon, J. A. (2010) Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy. Proteins: Struct., Funct., Bioinf. 78, 2523–2532.

    CAS  Google Scholar 

  22. Wang, J., Wolf, R. M., Caldwell, J. W., and Case, P. A. K. D. A. (2004) Development and testing of a general amber force field. J. Comp. Chem. 25, 1157–1174.

    Article  CAS  Google Scholar 

  23. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  24. Frisch, M. et al. Gaussian 03, Revision C.02, 2003, Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  25. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.

    Article  PubMed  CAS  Google Scholar 

  26. Andersen, H. (1983) Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34.

    Article  CAS  Google Scholar 

  27. Shuichi, M., and Peter, A. (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962, 148324.

    Article  Google Scholar 

  28. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: An N [center-dot] log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.

    Article  CAS  Google Scholar 

  29. Feller, S., Zhang, Y., Pastor, R., and Brooks, B. (1995) Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 103, 4613–4621.

    Article  CAS  Google Scholar 

  30. Boresch, S., Tettinger, F., Leitgeb, M., and Karplus, M. (2003) Absolute binding free energies: A quantitative approach for their calculation. J. Phys. Chem. B 107, 9535–9551.

    Article  CAS  Google Scholar 

  31. General, I. J. (2010) A Note on the Standard State’s Binding Free Energy. J. Chem. Theory Comput. 6, 2520–2524.

    Article  CAS  Google Scholar 

  32. Hamelberg, D., and McCammon, J. A. (2004) Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J. Am. Chem. Soc. 126, 7683–7689.

    Article  PubMed  CAS  Google Scholar 

  33. García, A. E. (1992) Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 68, 2696–2699.

    Article  PubMed  Google Scholar 

  34. Amadei, A., Linssen, A. B. M., and Berendsen, H. J. C. (1993) Essential dynamics of proteins. Proteins: Struct., Funct., Bioinf. 17, 412–425.

    Article  CAS  Google Scholar 

  35. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 4, 435–447.

    Article  CAS  Google Scholar 

  36. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38, 27–28.

    Article  CAS  Google Scholar 

  37. Zacharias, M., Straatsma, T. P., and McCammon, J. A. (1994) Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J. Chem. Phys. 100, 9025–9031.

    Article  CAS  Google Scholar 

  38. Jorge, M., Garrido, N., Queimada, A., Economou, I., and Macedo, E. (2010) Effect of the Integration Method on the Accuracy and Computational Efficiency of Free Energy Calculations Using Thermodynamic Integration. J. Chem. Theory Comput. 6, 1018–1027.

    Article  CAS  Google Scholar 

  39. Yang, W., Bitetti-Putzer, R., and Karplus, M. (2004) Free energy simulations: use of reverse cumulative averaging to determine the equilibrated region and the time required for convergence. J. Chem. Phys. 120, 2618–28.

    Article  PubMed  CAS  Google Scholar 

  40. Mobley, D. L., Chodera, J. D., and Dill, K. A. (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J. Chem. Phys. 125, 084902.

    Article  PubMed  Google Scholar 

  41. Wang, J., Deng, Y., and Roux, B. (2006) Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with Restraining Potentials. Biophys. J. 91, 2798–2814.

    Article  PubMed  CAS  Google Scholar 

  42. Cheng, Y., and Prusoff, W. H. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–108.

    Article  PubMed  CAS  Google Scholar 

  43. Kati, W. M., Montgomery, D., Carrick, R., Gubareva, L., Maring, C., McDaniel, K., Steffy, K., Molla, A., Hayden, F., Kempf, D., and Kohlbrenner, W. (2002) In vitro characterization of A-315675, a highly potent inhibitor of A and B strain influenza virus neuraminidases and influenza virus replication. Antimicrob. Agents Chemother. 46, 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  44. Allen, M. P., and Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, 1987.

    Google Scholar 

  45. Chodera, J., Swope, W., Pitera, J., Seok, C., and Dill, K. (2007) Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. J. Chem. Theory Comput. 3, 26–41, doi: 10.1021/ct0502864.

    Article  CAS  Google Scholar 

  46. Carlstein, E. (1986) The use of subseries values for estimating the variance of a general static from a stationary sequence. Annals of Statistics 14, 1171–1179.

    Article  Google Scholar 

  47. Åqvist, J., and Hansson, T. (1996) On the Validity of Electrostatic Linear Response in Polar Solvents. J. Phys. Chem. 100, 9512–9521.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the members of the McCammon group for useful discussions. This work was supported, in part, by the National Institutes of Health, the National Science Foundation, the National Biomedical Computational Resource, and the Howard Hughes Medical Institute. We thank the Center for Theoretical Biological Physics (NSF Grant PHY-0822283), and the Texas Advanced Computer Center (grant TG-MCA93S013) for distributed computing resources. We also thank Dr. Ross C. Walker at the San Diego Supercomputing Center for additional computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morgan Lawrenz or Riccardo Baron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lawrenz, M., Baron, R., Wang, Y., McCammon, J.A. (2012). Independent-Trajectory Thermodynamic Integration: A Practical Guide to Protein-Drug Binding Free Energy Calculations Using Distributed Computing. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics