Skip to main content

Using an Advanced Microfermentor System for Strain Screening and Fermentation Optimization

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 834))

  • 2417 Accesses

Abstract

Industrial biotechnology employs microorganisms (strains) for manufacture of certain food or industrial products to meet the increasing need of the world. To develop a bioproduction process, the first step is to screen out a production strain from isolated, mutated, or genetically engineered strain candidates. To maximize the bioproduction of a selected strain, bioreaction (fermentation) conditions need to be optimized. Fermentation experiments in shake flasks, bench-scale fermentors, or a combination of both are the conventional methods for both strain screening and fermentation optimization. Shake-flask experiments are easy to handle and cost-effective compared to experiments in fermentors, but the lower controllability makes the shake-flask data less informative for fermentation scale-up. Bench-scale fermentor experiments (>0.5 L) are well controlled under designed conditions and provide high-quality data, but they are also very time- and cost-consuming. The novel microfermentor system (typically <100 mL), or mentioned as microbioreactor, mini-fermentor, mini-bioreactor, or miniature bioreactor, combines the advantages of both shake-flask’s easy handling and bench-scale fermentor’s controllability, thus can achieve comparable results from fermentors at much higher efficiency and lower cost. This chapter introduces an example of how to use a microfermentor system for strain screening and fermentation optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Michael J. Waites, Neil L. Morgan, John S. Rockey, and Gary Higton (2001) Industrial microbiology: an introduction. Wiley-Blackwell.

    Google Scholar 

  2. Schäpper D., Alam M.N.H.Z., Szita N., and Lantz A.E., and Gernaey K.V. (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395, 679–695.

    Article  PubMed  Google Scholar 

  3. Weuster-Botz D., Hekmat D., Puskeiler R., and Franco-Lara E. (2007) Enabling Technologies: Fermentation and Downstream Processing. Adv Biochem Eng Biotechnol 105, 205–247.

    PubMed  CAS  Google Scholar 

  4. Kumar S., Wittmann C., and Heinzle E. (2004) Minibioreactors. Biotechnology Letters 26, 1–10.

    Article  PubMed  CAS  Google Scholar 

  5. Jonathan I Betts and Frank Baganz (2006) Miniature bioreactors: current practices and future opportunities. Microbial Cell Factories 5, 21.

    Google Scholar 

  6. Fernandes P. and Cabral J.M.S. (2006) Microlitre/millilitre shaken bioreactors in fermentative and biotransformation processes—A review. Biocatal Biotransformation 24, 237–252.

    Article  CAS  Google Scholar 

  7. Büchs J. (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7, 91–98.

    Article  PubMed  Google Scholar 

  8. Anderlei T., Büchs J. (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7,157–162.

    Article  PubMed  CAS  Google Scholar 

  9. Wittmann C., Kim H.M., John G., Heinzle E. (2003) Characterisation and application of an optical sensor for quantification of dissolved oxygen in shake-flasks. Biotechnol Lett 25, 377–380.

    Article  PubMed  CAS  Google Scholar 

  10. Danielson P.B., Büchs J., Stockmann C., Fogleman J.C. (2004) Maximizing cell densities in miniprep-scale cultures with H15 medium and improved oxygen transfer. Biochem Eng J 17, 175–180.

    Article  CAS  Google Scholar 

  11. Stockmann C., Losen M., Dahlems U., Knocke C., Gellissen G., Büchs J. (2003) Effect of oxygen supply on passaging, stabilizing and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 4, 195–205.

    Article  PubMed  CAS  Google Scholar 

  12. Houston J.G., Banks M. (1997) The chemical-biological interface: developments in automated and miniaturised screening technology. Curr Opin Biotechnol 8, 734–740.

    Article  PubMed  CAS  Google Scholar 

  13. Duetz W.A., Ruedi L., Hermann R., O’Connor K., Büchs J., Witholt B. (2000) Methods for intense aeration, growth, storage and replication of bacterial strains in microtiter plates. Appl Environ Microbiol 66, 2641–2646.

    Article  PubMed  CAS  Google Scholar 

  14. Micro-24 MicroReactor System. See http://www.pall.com/biopharm_52961.asp.

  15. Doig S.D., Diep A., Baganz F. (2005) Characterisation of a novel miniaturized bubble column bioreactor for high throughput cell cultivation. Biochem Eng J 23, 97–105.

    Article  CAS  Google Scholar 

  16. Betts J.I., Doig S.D., Baganz F. (2006) The characterization and application of a miniature 10 ml stirred-tank bioreactor, showing scale-down equivalence with a conventional 7L reactor. Biotechnol Prog 22, 681–688.

    Article  PubMed  CAS  Google Scholar 

  17. Gilla N.K., Appletonb M., Baganza F., and Lye G.J. (2008) Design and characterisation of a miniature stirred bioreactor system for parallel microbial fermentations. Biochem Eng J 39, 164–176.

    Article  Google Scholar 

  18. Xie D., Shao Z., Achkar J., Zha W., Frost J.W., and Zhao H. (2006) Microbial synthesis of Triacetic Acid Lactone. Biotechnol Bioeng 93, 727–736.

    Article  PubMed  CAS  Google Scholar 

  19. Funke M., Buchenauer A., Schnakenberg U., Mokwa W., Diederichs S., Mertens A., Muller C., Kensy F., Buchs J. (2010) Microfluidic BioLector—Microfluidic Bioprocess Control in Microtiter Plates. Biotechnol Bioeng 107, 497–505.

    Article  PubMed  CAS  Google Scholar 

  20. Amanullah A., Otero J.M., Mikola M., Hsu A., Zhang J., Aunins J., Schreyer HB., Hope J.A., Russo A.P. (2010) Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnol Bioeng 106, 57–67.

    PubMed  CAS  Google Scholar 

  21. Cellstation high throughput bioreactors. See http://www.fluorometrix.com.

  22. DAS GIP parallel system for microbial fermentation in process development. See http://www.dasgip.com.

Download references

Acknowledgments

The author would like to thank Dr. Bjorn D. Tyreus from DuPont Central Research and Development for his review and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xie, D. (2012). Using an Advanced Microfermentor System for Strain Screening and Fermentation Optimization. In: Cheng, Q. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 834. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-483-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-483-4_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-482-7

  • Online ISBN: 978-1-61779-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics