Skip to main content

In Vivo Screening of Ligand-Dependent Hammerhead Ribozymes

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

The development of artificial switches of gene expression is of high importance for future applications in biotechnology and synthetic biology. We have developed a powerful RNA-based system which allows for the ligand-dependent and reprogrammable control of gene expression in Escherichia coli. Our system makes use of the hammerhead ribozyme (HHR) which acts as molecular scaffold for the sequestration of the ribosome binding site (RBS), mimicking expression platforms in naturally occurring riboswitches. Aptamer domains can be attached to the ribozyme as exchangeable ligand-sensing modules. Addition of ligands to the bacterial growth medium changes the activity of the ligand-dependent self-cleaving ribozyme which in turn switches gene expression. In this chapter, we describe the in vivo screening procedure allowing for reprogramming the ligand-specificity of our system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth, A., and Breaker, R. R. (2009) The structural and functional diversity of metabolite-binding riboswitches, Annu Rev Biochem 78, 305–334.

    Article  PubMed  CAS  Google Scholar 

  2. Wieland, M., and Hartig, J. S. (2008) Artificial riboswitches: synthetic mRNA-based regulators of gene expression, Chembiochem 9, 1873–1878.

    Article  PubMed  CAS  Google Scholar 

  3. Tang, J., and Breaker, R. R. (1997) Rational design of allosteric ribozymes, Chem Biol 4, 453–459.

    Article  PubMed  CAS  Google Scholar 

  4. Khvorova, A., Lescoute, A., Westhof, E., and Jayasena, S. D. (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity, Nat Struct Biol 10, 708–712.

    Article  PubMed  CAS  Google Scholar 

  5. Yen, L., Svendsen, J., Lee, J. S., Gray, J. T., Magnier, M., Baba, T., D’Amato, R. J., and Mulligan, R. C. (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage, Nature 431, 471–476.

    Article  PubMed  CAS  Google Scholar 

  6. Win, M. N., and Smolke, C. D. (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function, Proc Natl Acad Sci USA 104, 14283–14288.

    Article  PubMed  CAS  Google Scholar 

  7. Wieland, M., and Hartig, J. S. (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria, Angew Chem Int Ed Engl 47, 2604–2607.

    Article  PubMed  CAS  Google Scholar 

  8. Wieland, M., Benz, A., Klauser, B., and Hartig, J. S. (2009) Artificial ribozyme switches containing natural riboswitch aptamer domains, Angew Chem Int Ed Engl 48, 2715–2718.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar, D., An, C. I., and Yokobayashi, Y. (2009) Conditional RNA interference mediated by allosteric ribozyme, J Am Chem Soc131, 13906–13907.

    Article  PubMed  CAS  Google Scholar 

  10. Ogawa, A., and Maeda, M. (2008) An artificial aptazyme-based riboswitch and its cascading system in E. coli, Chembiochem 9, 206–209.

    Article  PubMed  CAS  Google Scholar 

  11. Auslander, S., Ketzer, P., and Hartig, J. S. (2010) A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression, Mol Biosyst 6, 807–814.

    Article  PubMed  Google Scholar 

  12. Wieland, M., Gfell, M., and Hartig, J. S. (2009) Expanded hammerhead ribozymes containing addressable three-way junctions, RNA 15, 968–976.

    Google Scholar 

  13. Berschneider, B., Wieland, M., Rubini, M., and Hartig, J. S. (2009) Small-molecule-dependent regulation of transfer RNA in bacteria, Angew Chem Int Ed Engl 48, 7564–7567.

    Article  PubMed  CAS  Google Scholar 

  14. Wieland, M., Berschneider, B., Erlacher, M. D., and Hartig, J. S. (2010) Aptazyme-mediated regulation of 16S ribosomal RNA, Chem Biol 17, 236–242.

    Article  PubMed  CAS  Google Scholar 

  15. Reetz, M. T., Kahakeaw, D., and Lohmer, R. (2008) Addressing the numbers problem in directed evolution, Chembiochem 9, 1797–1804.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg S. Hartig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saragliadis, A., Klauser, B., Hartig, J.S. (2012). In Vivo Screening of Ligand-Dependent Hammerhead Ribozymes. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_28

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics