Skip to main content

Flexizymes as a tRNA Acylation Tool Facilitating Genetic Code Reprogramming

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

Genetic code reprogramming is a method for the reassignment of arbitrary codons from proteinogenic amino acids to non-proteinogenic ones, and thus specific sequences of nonstandard peptides can be ribosomally expressed according to their mRNA templates. We here describe a protocol that facilitates the genetic code reprogramming using flexizymes integrated with a custom-made in vitro translation apparatus, referred to as the flexible in vitro translation (FIT) system. Flexizymes are flexible tRNA acylation ribozymes that enable the preparation of a diverse array of non-proteinogenic acyl-tRNAs. These acyl-tRNAs read vacant codons created in the FIT system, yielding the desired nonstandard peptides with diverse exotic structures, such as N-acyl groups, d-amino acids, N-methyl amino acids, and physiologically stable macrocyclic scaffolds. Facility of the protocol allows for a wide variety of applications in the synthesis of new classes of nonstandard peptides with biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forster, A. C., Tan, Z., Nala, M. N., Lin, H., Qu, H., Cornish, V. W., and Blacklow, S. C. (2003) Programming peptidomimetic syntheses by translating genetic codes designed de novo Proc. Natl. Acad. Sci. USA. 100, 6353–6357.

    Article  CAS  Google Scholar 

  2. Josephson, K., Hartman, M. C., and Szostak, J. W. (2005) Ribosomal synthesis of unnatural peptides J. Am. Chem. Soc. 127, 11727–11735.

    Article  CAS  Google Scholar 

  3. Murakami, H., Ohta, A., Ashigai, H., and Suga, H. (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis Nat. Methods 3, 357–359.

    CAS  Google Scholar 

  4. Niwa, N., Yamagishi, Y., Murakami, H., and Suga, H. (2009) A flexizyme that selectively charges amino acids activated by a water-friendly leaving group Bioorg. Med. Chem. Lett. 19, 3892–3894.

    Article  CAS  Google Scholar 

  5. Sako, Y., Morimoto, J., Murakami, H., and Suga, H. (2008) Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions J. Am. Chem. Soc. 130, 7232–7234.

    Article  CAS  Google Scholar 

  6. Goto, Y., Murakami, H., and Suga, H. (2008) Initiating translation with D-amino acids RNA 14, 1390–1398.

    CAS  Google Scholar 

  7. Goto, Y., Ohta, A., Sako, Y., Yamagishi, Y., Murakami, H., and Suga, H. (2008) Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides ACS Chem. Biol. 3, 120–129.

    CAS  Google Scholar 

  8. Kawakami, T., Murakami, H., and Suga, H. (2008) Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides Chem. Biol. 15, 32–42.

    CAS  Google Scholar 

  9. Kawakami, T., Murakami, H., and Suga, H. (2008) Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids J. Am. Chem. Soc. 130, 16861–16863.

    Article  CAS  Google Scholar 

  10. Ohta, A., Murakami, H., Higashimura, E., and Suga, H. (2007) Synthesis of polyester by means of genetic code reprogramming Chem. Biol. 14, 1315–1322.

    CAS  Google Scholar 

  11. Goto, Y., and Suga, H. (2009) Translation initiation with initiator tRNA charged with exotic peptides J. Am. Chem. Soc. 131, 5040–5041.

    Article  CAS  Google Scholar 

  12. Xiao, H., Murakami, H., Suga, H., and Ferre-D’Amare, A. R. (2008) Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme Nature 454, 358–361.

    Google Scholar 

  13. Kawakami, T., Ohta, A., Ohuchi, M., Ashigai, H., Murakami, H., and Suga, H. (2009) Diverse backbone-cyclized peptides via codon reprogramming Nat. Chem. Biol. 5, 888–890.

    CAS  Google Scholar 

  14. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates Nucleic Acids Res. 15, 8783–8798.

    Article  PubMed  CAS  Google Scholar 

  15. Saito, H., Kourouklis, D., and Suga, H. (2001) An in vitro evolved precursor tRNA with aminoacylation activity EMBO J. 20, 1797–1806.

    CAS  Google Scholar 

  16. Olins, P. O., Devine, C. S., Rangwala, S. H., and Kavka, K. S. (1988) The T7 Phage Gene 10 Leader Rna, a Ribosome-Binding Site That Dramatically Enhances the Expression of Foreign Genes in Escherichia-Coli Gene 73, 227–235.

    Google Scholar 

  17. Martinis, S. A., and Schimmel, P. (1992) Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes with methionine Proc. Natl. Acad. Sci. USA. 89, 65–69.

    Article  CAS  Google Scholar 

  18. Kung, H. F., Redfield, B., Treadwell, B. V., Eskin, B., Spears, C., and Weissbach, H. (1977) DNA-directed in vitro synthesis of beta-galactosidase. Studies with purified factors J. Biol. Chem. 252, 6889–6894.

    PubMed  CAS  Google Scholar 

  19. Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., and Ueda, T. (2001) Cell-free translation reconstituted with purified components Nat. Biotechnol. 19, 751–755.

    Article  CAS  Google Scholar 

  20. Schagger, H. (2006) Tricine-SDS-PAGE Nat. Protoc. 1, 16–22.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hiroshi Murakami for the contributions to the development of the methods presented in this study. We thank Dr. Takayuki Katoh for assistance with manuscript preparation. We also thank Mr. Dai Shimomai for proofreading. This work was supported by grants of Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (S) (16101007), Specially Promoted Research (21000005), and a research and development projects of the Industrial Science and Technology Program in the New Energy and Industrial Technology Development Organization (NEDO) to H.S., and grants of Japan Society for the Promotion of Science Grants-in-Aid for Young Scientists (B) (22750145) and PREST, Japan Science and Technology Agency to Y.G..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Suga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goto, Y., Suga, H. (2012). Flexizymes as a tRNA Acylation Tool Facilitating Genetic Code Reprogramming. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics