Skip to main content

Analysis of Single Eukaryotic Cells Using Raman Tweezers

  • Protocol
  • First Online:
Single-Cell Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 853))

Abstract

Raman Tweezers is a technique that combines optical trapping with Raman spectroscopy and has enabled the spectroscopic analysis of single cells. Applications of this technique include the identification and discrimination of different types of cells, including healthy and non-healthy cells (e.g. cancer cells). In addition, the interaction of cells with stimuli, e.g. drugs, can also be studied on a single-cell basis. Herein, a generic protocol for the analysis of fixed and living single eukaryotic cells is described, including the considerations required to build a Raman Tweezers systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snook RD, Harvey TJ, Correia Faria E, and Gardner P. (2009) Raman tweezers and their application to the study of singly trapped eukaryotic cells. Integrative Biology 1, 43–52.

    Article  PubMed  CAS  Google Scholar 

  2. Rusciano G, De Luca AC, Pesce G, and Sasso A. (2008) Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders. Sensors 8, 7818–7832.

    Article  CAS  Google Scholar 

  3. Harvey TJ, Faria EC, Henderson A, Gazi E, Ward AD, Clarke NW, Brown MD, Snook RD, and Gardner P. (2008) Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers. Journal of Biomedical Optics 13.

    Google Scholar 

  4. Harvey TJ, Hughes C, Ward AD, Faria EC, Henderson A, Clarke NW, Brown MD, Snook RD, and Gardner P. (2009) Classification of fixed urological cells using Raman tweezers. Journal of Biophotonics 2, 47–69.

    Article  PubMed  CAS  Google Scholar 

  5. Moritz TJ, Polage CR, Taylor DS, Krol DM, Lane SM, and Chan JW. (2010) Evaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers. Journal of Clinical Microbiology 48, 4287–4290.

    Article  PubMed  CAS  Google Scholar 

  6. Ashkin A. (1970) Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters 24, 156–159.

    Article  CAS  Google Scholar 

  7. Ramser K, and Hanstorp D. (2010) Optical manipulation for single-cell studies. Journal of Biophotonics 3, 187–206.

    Article  PubMed  CAS  Google Scholar 

  8. Thurn R, and Kiefer W. (1984) Raman-Microsampling Technique Applying Optical Levitation by Radiation Pressure. Applied Spectroscopy 38, 78–83.

    Article  CAS  Google Scholar 

  9. Creely CM, Singh GP, and Petrov D. (2005) Dual wavelength optical tweezers for confocal Raman spectroscopy. Optics Communications 245, 465–470.

    Article  CAS  Google Scholar 

  10. Movasaghi Z, Rehman S, and Rehman IU. (2007) Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews 42, 493–541.

    Article  CAS  Google Scholar 

  11. Neugebauer U, Bocklitz T, Clement JH, Krafft C, and Popp J. (2010) Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst 135, 3178–3182.

    Article  PubMed  CAS  Google Scholar 

  12. Pelletier MJ. (1999) in Analytical Applications of Raman Spectroscopy (J., P. M., Ed.) pp 23–25, Blackwell Science, Michigan.

    Google Scholar 

  13. ECACC (2010) Fundamental Techniques in Cell Culture: Laboratory Handbook, 2nd ed., Sigma-Aldrich.

    Google Scholar 

  14. Kiernan JA (1999) Histological and Histochemical Methods: Chapter 2 Butterworth Heinemann, Oxford.

    Google Scholar 

  15. Leong A. (2000) Fixation and fixatives in Laboratory Histopathology: A complete Reference (Leong, A., Ed.) pp 12-43, Woods and Ellis, London.

    Google Scholar 

  16. Draux F, Gobinet C, Sulé-Suso J, Trussardi A, Manfait M, Jeannesson P, and Sockalingum GD. (2010) Raman spectral imaging of single cancer cells: Probing the impact of sample fixation methods. Analytical and Bioanalytical Chemistry 397, 2727–2737.

    Article  PubMed  CAS  Google Scholar 

  17. Meade AD, Clarke C, Draux F, Sockalingum GD, Manfait M, Lyng FM, and Byrne HJ. (2010) Studies of chemical fixation effects in human cell lines using Raman microspectroscopy. Analytical and Bioanalytical Chemistry 396, 1781–1791.

    Article  PubMed  CAS  Google Scholar 

  18. Mariani MM, Lampen P, Popp J, Wood BR, and Deckert V. (2009) Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. Analyst 134, 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  19. Chan JW, Taylor DS, and Thompson DL. (2009) The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy. Biopolymers 91, 132–139.

    Article  PubMed  CAS  Google Scholar 

  20. Hastings G, Wang R, Krug P, Katz D, and Hilliard J. (2008) Infrared microscopy for the study of biological cell monolayers. I. Spectral effects of acetone and formalin fixation. Biopolymers 89, 921–930.

    CAS  Google Scholar 

  21. Ó Faoláin E, Hunter MB, Byrne JM, Kelehan P, McNamara M, Byrne HJ, and Lyng FM. (2005) A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vibrational Spectro-scopy 38, 121–127.

    Google Scholar 

  22. Hayat MA (2000) Principles and Techniques of Electron Microscopy Cambridge University Press, Cambridge

    Google Scholar 

  23. Skoog DA, and West DM (1981) Principles of Instrumental Analysis: Chapter 3, Holt-Saunders, Tokyo.

    Google Scholar 

  24. Stevenson CL, and Vo-Dinh T. (1996) Signal expressions in Raman spectroscopy in Modern techniques in Raman spectroscopy (Laserna, J. J., Ed.) pp 1-39, John Wiley & Sons, Chichester.

    Google Scholar 

  25. Martens H, and Stark E. (1991) Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 9, 625–635.

    Article  PubMed  CAS  Google Scholar 

  26. Heraud P, Wood BR, Beardall J, and McNaughton D. (2006) Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. Journal of Chemometrics 20, 193–197.

    Article  CAS  Google Scholar 

  27. Afseth NK, Segtnan VH, and Wold JP. (2006) Raman spectra of biological samples: A study of preprocessing methods. Applied Spectroscopy 60, 1358–1367.

    Article  PubMed  CAS  Google Scholar 

  28. De Gelder J, De Gussem K, Vandenabeele P, De Vos P, and Moens L. (2007) Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidus metallidurans. Analytica Chimica Acta 585, 234–240.

    Article  PubMed  Google Scholar 

  29. De Gussem K, Vandenabeele P, Verbeken A, and Moens L. (2007) Chemotaxonomical identification of spores of macrofungi: Possibilities of Raman spectroscopy. Analytical and Bioanalytical Chemistry 387, 2823–2832.

    Article  PubMed  CAS  Google Scholar 

  30. Lasch P, Diem M, and Naumann D. (2004) FT-IR microspectroscopic imaging of prostate tissue sections. Proc. of SPIE 5321, 1–9.

    Article  Google Scholar 

  31. Sahu RK, Argov S, Salman A, Zelig U, Huleihel M, Grossman N, Gopas J, Kapelushnik J, and Mordechai S. (2005) Can Fourier transform infrared spectroscopy at higher wavenumbers (mid IR) shed light on biomarkers for carcinogenesis in tissues? Journal of Biomedical Optics 10, 054017-1-054017–10.

    Google Scholar 

  32. Salman A, Ramesh J, Erukhimovitch V, Talyshinsky M, Mordechai S, and Huleihel M. (2003) FTIR microspectroscopy of malignant fibroblasts transformed by mouse sarcoma virus. Journal of Biochemical and Biophysical Methods 55, 141–153.

    Article  PubMed  CAS  Google Scholar 

  33. Savitzky JA, and Golay MJE. (1964) Smoothing and Differentiation of Data by Simplified Least Squares Procedures Anal. Chem. 36, 1627–1639.

    CAS  Google Scholar 

  34. Ferraro JR, Nakamoto K, and Brown CW. (2002) Chapter 5 – Analytical Chemistry, in Introductory Raman Spectroscopy pp 267–293, Academic Press, San Diego.

    Google Scholar 

  35. Harvey TJ. (2008) Development of vibrational spectroscopic cytology for prostate cancer diagnosis, School of Chemical Engineering and Analytical Science, PhD Thesis The University of Manchester, Manchester.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Correia Faria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Faria, E.C., Gardner, P. (2012). Analysis of Single Eukaryotic Cells Using Raman Tweezers. In: Lindström, S., Andersson-Svahn, H. (eds) Single-Cell Analysis. Methods in Molecular Biology, vol 853. Humana Press. https://doi.org/10.1007/978-1-61779-567-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-567-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-566-4

  • Online ISBN: 978-1-61779-567-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics